Top of page
Global Site Navigation

Electron Science Research Institute

Local Section Navigation
You are here:
ECU is currently converting this web content to a more mobile friendly format. If you find the content below is not formatting correctly during this transition please view on desktop browser.
Main Content

Mr Ahmed Abdelrahman

PhD Project

Exploring and understanding the concepts of quantum confinement are my passions, and I like to investigate them using the available fabrication technologies, so that eventually, I will come up with suitable nano- and micro-scale environments and structures capable of hosting and precisely allocating quasi-particles. These structures are well known as quantum devices because they can release many hidden details about the quantum phase space of the trapped quasi-particle including their critical transitions.

My work takes into account both experimental and theoretical approaches; experimentally I design nano/micro devices to create confining quantum fields such as magnetic lattices which produce periodically distributed confining magnetic fields and plasmonic lattices that create periodically distributed electric fields. I study the trapping of ultracold atoms, as an example of quasi-particles, in the magnetic lattices; meanwhile, I like to explore confining excitons in solid state devices using confining electric fields produced by the plasmonic structure and multi-quantum well systems. 

These approaches require that one must be well equipped with a deep understanding of the nature of the interactions and able to interpret, using quantum mechanics and quantum field theory, these types of critical dialogs. I mainly use the Bose/Fermi-Hubbard models to describe the physics involved; for example understanding the quasi-particles tunneling between the lattice sites, their coherence lifetime and their possible interactions which may produce simulated condensed matter systems. Currently I would like to understand how one can realize Josephson qubits using ultracold fermionic gases or BEC excitons.

I also enjoy, based on my previous studies in theoretical physics, using the concepts of quantum geometry and tomography where I use them to reconstruct the quantum state of the confined quasi-particles, for example using Majorana representations to visualize the qubit state in the inverse complex Hilbert space and using the inverse Radon transformation (Wigner function) to reconstruct the quantum state in Wigner space such as reconstructing Shrodinger's cat state.


  • BSc(Hons) in Physics in 2001 from Al Neelain University – Sudan,
  • MSc in 2005 in Science, Major in Mathematics, Specialized in Scientific Computing from the Royal Institute of Technology at KTH university- Sweden,
  • MSc in 2007 in Physics from Leipzig University – Germany

Recent Publications

Refereed Journal Articles

  • A. Abdelrahman, P. Hannaford, and K. Alameh,” Adiabatically Induced Coherent Josephson Oscillations of Ultracold Atoms in an Asymmetric Two-Dimensional Magnetic Lattice”. Optics Express 17, 24358 (2009).
  • Abdelrahman, P. Hannaford, M. Vasiliev and K. Alameh,” Asymmetrical Two-dimensional Magnetic Lattices for Ultracold Atoms”, In proc, Phys. Rev. A (2010).
  • Abdelrahman, M. Vasiliev, K. Alameh , P. Hannaford, Byoung S. Ham, and Yong-Tak Lee, “Towards Bose-Einstein condensation of excitons in an asymmetric multi-quantum state magnetic lattice”; Session ThPD2, 9th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2009), South Korea, September 14-18, 2009.
  • Ahmed Abdelrahman, Kamal Alameh and Peter Hannaford, “Adiabatic coherent quantum tunneling of ultracold atoms trapped in an asymmetrical two-dimensional magnetic lattices”, In proceedings 6th International Symposium on High Capacity Optical Networks & Enabling Technologies, Alexandria, Egypt, December 28-30, 2009.


PhD Student
Mr Ahmed M. Abdelrahman
Joondalup Campus: Building 8, Room 8.118
Telephone: (61 8) 6304 5146

Skip to top of page