Planning and Design Guidelines
Table of Contents

Introduction 12

Building Design 13

1. **Campus Master Plans** 13
2. **Precinct Wide Planning** 13
3. **Design Approval Process** 13
4. **Delegation & Delegated Authority** 14
5. **Safety in Design (SiD)** 14
6. **Risk Management** 14
7. **Project Specifications** 15
8. **General Building Design** 15

9. **Facilities Planning** 16
 9.1 **Academic, Research and Administrative Workplaces** 16
 9.2 **Office Space** 16
 9.3 **Open Plan Workspace** 17
 9.4 **Teaching and Learning Facilities** 17
 9.5 **Planning** 18

10. **Sustainable Design** 18
 10.1 **Introduction** 18
 10.2 **Environmental Performance Indicators** 18
 10.3 **Design Process** 19
 10.4 **Preliminary Analysis** 20
 10.5 **Establishment of Sustainability Targets** 21
 10.6 **Concept Design** 22
 10.7 **Schematic Design** 23
 10.8 **Detailed Design and Documentation** 24
 10.9 **Construction and Commissioning** 25
 10.10 **Post Occupancy Evaluation** 26
Appendix 1

11. **Acoustic Requirements**
 11.1 Acoustic Terminology
 11.2 Compliance with Codes and Standards
 11.3 Implementation for Existing Facilities
 11.4 Planning
 11.5 Environmental Regulations (Noise)
 11.6 Indoor Ambient Noise Levels
 11.7 Mechanical Acoustics
 11.8 Hydraulic Noise
 11.9 Hearing Conversation
 11.10 Acoustic Isolation
 11.11 Speech Privacy
 11.12 Reverberation Control
 11.13 Room Acoustics
 11.14 Vibration
 11.15 Construction Noise

12. **Design for Universal Access**
 12.1 Introduction
 12.2 Generally
 12.3 Reference Documents
 12.4 Definitions
 12.5 Walkways, Ramps and Landings
 12.6 Handrails and Grabrails
 12.7 Doorways and Circulation Spaces
 12.8 Lifts
 12.9 Stairways
 12.10 Sanitary Facilities
 12.11 Controls
 12.12 Signs
 12.13 Hearing Augmentation
 12.14 Floor Surfaces
 12.15 Carparking
 12.16 Public Counters
 12.17 Student Accommodation Requirements and Student facilities
13. **Specialist Facilities** 61
 13.1 Cleaner’s Store 61
 13.2 Rest Room 62
 13.3 Toilets 62
 13.4 Shower Facilities 62
 13.5 Courtyards and Indoor Planters 63
 13.6 Service and Storage Areas 63
 13.7 Entrances 63
 13.8 Loading Docks 64
 13.9 Carparking 64
 13.10 Staff Lounges and Tea Rooms 64
 13.11 Waste and Recycling 64
 13.12 Multi Access Room 65
 13.13 Laboratories 65
 13.14 End of Trip Facilities 65

Building Fabric 66

14. **General** 66

15. **External Fabric** 66
 15.1 Structure - Constructability 66
 15.2 Roofing 66
 15.3 Wall Lining 66
 15.4 External Soffit Lining 67
 15.5 External Windows and Doors 67
 15.6 Sunscreen and External Attachments 67
 15.7 Access for Periodic Maintenance 67

16. **Internal Walls, Partitions and Finishes** 68
 16.1 Flexibility 68
 16.2 Materials (including skirtings) 68

17. **Floor and Floor Finishes** 68
 17.1 Design 68
 17.2 Floor Loads 68
 17.3 Termite Control 68
 17.4 Floor Mats 69
 17.5 Floor Finishes 69
18. **Ceilings and Ceiling Finishes** 70

19. **Furniture, Fixtures and Equipment** 70
 19.1 Built-in Furniture 70
 19.2 Fitout 70
 19.3 Standard Loose Furniture Allocations 70
 19.4 Compactus 72
 19.5 Whiteboards and Pin Boards 72
 19.6 Lecture Theatre Fittings 72
 19.7 Tea Preparation and Staff Rooms 72

20. **Curtains and Blinds** 73
 20.1 General 73
 20.2 Samples 73

21. **Projection Surfaces** 73

22. **Miscellaneous** 74

23. **Special Equipment** 74

24. **Door Hardware and Locks** 74
 24.1 Locks 74
 24.2 Keys 75
 24.3 Building Keying System 75
 24.4 Service Keying System (Building Fabric.) 76
 24.5 Key Stamping Policy 78
 24.6 Door Furniture 78
 24.7 Door Closer 78
 24.8 Push/Pull Plates and Handles 78
 24.9 Kick Plates 78
 24.10 Hold-Open Devices 78
 24.11 Toilet Cubicle Latch Sets 79

25. **Signage** 79
 25.1 Corporate Signage 79
 25.2 Room Number and Room Name Signs 79
 25.3 Internal Room Numbering System 80
 25.4 Internal Directional Signs 82
 25.5 Symbols 82
25.6 Internal Signs that are set 90° to Walls
25.7 Directory Boards
25.8 Braille and Tactile Signage

26. Waste Management Plan
26.1 Uncleared Land at ECU
26.2 In-buildings-requirements
26.3 Suggested Designs for the Different Areas For Kitchen areas:
26.4 Other Bin Requirements An area will need to be provided for the following bins within buildings:

Building Services

27. Access, Maintenance and Manuals
27.1 Operating and Maintenance Manuals
27.2 Access for Engineering Services
27.3 Plant Rooms

28. Mechanical Services, Heating, Ventilation and Air Conditioning
28.1 General
28.2 Preferred Contractors
28.3 Sustainability
28.4 Design Conditions
28.5 Performance Standards
28.6 Room Occupancy Number
28.7 Equipment Loads
28.8 Fresh Air Rates
28.9 Ventilation Requirements
28.10 Ventilation in Photographic Darkroom Areas
28.11 Fire & Smoke Control
28.12 Humidity Control
28.13 Chilled Water Temperatures
28.14 Heating Water Temperatures
28.15 Condenser Water Temperatures
28.16 Noise and Vibration Control
28.17 Air Handling Systems
28.18 Chilled Water Systems
28.19 Heating Water Systems
28.20 Ductwork and Registers 96
28.21 Piping, Valves and Fittings 97
28.22 Insulation to Pipework 99
28.23 Underground Services 99
28.24 Plant and Equipment 99
28.25 Instruments 104
28.26 Air Conditioning Electrical System 104
28.27 Identification of Equipment 105
28.28 Identification of Pipework 105
28.29 Future Air Conditioning 105
28.30 Building Management System (BMS) 105
28.31 Air Conditioning Controls – General 106
28.32 Air Conditioning Control Functionality 106
28.33 Load Shedding 119
28.34 Energy Management 119
28.35 Gas Meters/BMS Connection 119
28.36 Practical Completion 120
28.37 Defects Warranty Period 120
28.38 Operating & Maintenance Manuals 120

29. Hydraulic Services 121
29.1 Preferred Contractors 121
29.2 Piped Pressure Services 121
29.3 All pipe work to grade to liquid collection catch pots. 125
29.4 Identification of Pipe work 125
29.5 Underground Pipe Work 125
29.6 Pumps (where required to achieve nominated pressures or flows) 126
29.7 Inspection and Testing 126
29.8 Sanitary Plumbing 127
29.9 Stormwater Drainage 128
29.10 Backflow Prevention 129
29.11 Fixtures 130
29.12 Tanks and Hot Water Systems 131
29.13 Water Meters 132
29.14 BMS Control Points 132

30. Lift Services 133
30.1 Preferred Contractors 133
30.2 Lift Contracts 133
30.3 Lift Dimensions 133
30.4 Types of Lift 133
30.5 Security 133
30.6 Facilities for Persons with Disabilities 133
30.7 Lift Car 134
30.8 Lightning Surge Diverters 135
30.9 Emergency Lighting 135
30.10 Lift Machine-Room 135
30.11 Keys 135
30.12 Manual 135
30.13 Maintenance & Warranty 135
30.14 Identification of Equipment 136

31. Electrical Services 136
31.1 Preferred Contractors 136
31.2 Sustainability 136
31.3 Scope 136
31.4 Flexibility of Design 136
31.5 RCD Protection 136
31.6 Lighting 136
31.7 Switching 139
31.8 Power 145
31.9 General Wiring 150
31.10 Emergency Lighting 151
31.11 Exit and Stair Lighting 151
31.12 Lightning Protection 152
31.13 Electric Fans and Fan Heaters 152
31.14 Toilets 152
31.15 Tea Rooms 152
31.16 Gas Meters 152
31.17 Distribution System 152
31.18 Clock System 153
31.19 Electric Water Heaters and Circulating Pump 153
31.20 Underground Services and Pits 153
31.21 Substations 153
31.22 As Constructed Documentation and Manuals 154
31.23 Regulatory Authority Notices 154
31.24 Auto Doors 155

32. Communications 155
32.1 Generally 155
32.2 Cabling Provisions 156
32.3 Detailed Requirements 157
32.4 Facility Cabling and Patch Leads 160
32.5 Labelling and Documentation 162
32.6 Acceptance, Testing Certification and Warranties 163

33. Media Services 165
33.1 General 165
33.2 Contractors and Equipment 165
33.3 Antennae 165
33.4 Security of Equipment 165
33.5 Media Installations 165
33.6 Flexi Lecture 166
33.7 Media Services Help 166

34. Fire Services 167
34.1 General 167
34.2 Preferred Contractors 167
34.3 Fire Alarms 167
34.4 Automatic Fire Alarms 168
34.5 Hydrants and Hose Reels 169
34.6 Fire Extinguishers 170
34.7 Fire Blankets 171
34.8 Automatic Fire Sprinklers 171
34.9 Special Systems 171
34.10 Diagram of Exits 172

35. Security Services 172
35.1 General 172
35.2 Crime Prevention through Environmental Design (CPTED) 173
35.3 Electronic Access Control Systems 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.4</td>
<td>Electronically Operated Door Locks & Hardware</td>
<td>174</td>
</tr>
<tr>
<td>35.5</td>
<td>Card Control</td>
<td>176</td>
</tr>
<tr>
<td>35.6</td>
<td>Closed Circuit Television</td>
<td>178</td>
</tr>
<tr>
<td>35.7</td>
<td>Intrusion Alarm Systems</td>
<td>180</td>
</tr>
<tr>
<td>35.8</td>
<td>Field Hardware Communications</td>
<td>181</td>
</tr>
<tr>
<td>35.9</td>
<td>Power</td>
<td>182</td>
</tr>
<tr>
<td>35.10</td>
<td>Documentation</td>
<td>182</td>
</tr>
<tr>
<td>35.11</td>
<td>Acceptance Testing and Certification</td>
<td>182</td>
</tr>
<tr>
<td>36.</td>
<td>Colour Coding – Plant and Equipment</td>
<td>183</td>
</tr>
<tr>
<td>36.1</td>
<td>Pumps</td>
<td>183</td>
</tr>
<tr>
<td>36.2</td>
<td>Air-Handling Plants</td>
<td>184</td>
</tr>
<tr>
<td>36.3</td>
<td>Air-Compressors and Vacuum Pumps</td>
<td>184</td>
</tr>
<tr>
<td>36.4</td>
<td>Refrigeration Systems</td>
<td>185</td>
</tr>
<tr>
<td>36.5</td>
<td>Electrical</td>
<td>185</td>
</tr>
<tr>
<td>36.6</td>
<td>Pipework, Valves and Fittings (not Outlets)</td>
<td>185</td>
</tr>
<tr>
<td>36.7</td>
<td>Supports</td>
<td>186</td>
</tr>
<tr>
<td>37.</td>
<td>General</td>
<td>187</td>
</tr>
<tr>
<td>38.</td>
<td>Planting</td>
<td>187</td>
</tr>
<tr>
<td>39.</td>
<td>Mulching</td>
<td>187</td>
</tr>
<tr>
<td>40.</td>
<td>Turf</td>
<td>188</td>
</tr>
<tr>
<td>41.</td>
<td>Irrigation</td>
<td>188</td>
</tr>
<tr>
<td>42.</td>
<td>Paving</td>
<td>188</td>
</tr>
<tr>
<td>43.</td>
<td>CAD</td>
<td>190</td>
</tr>
<tr>
<td>43.1</td>
<td>General</td>
<td>190</td>
</tr>
<tr>
<td>43.2</td>
<td>Schedule of Documentation to be Provided</td>
<td>190</td>
</tr>
<tr>
<td>43.3</td>
<td>Provision of Data to the Consultant by ECU</td>
<td>192</td>
</tr>
<tr>
<td>44.</td>
<td>ECU Preferred Drafting Standards</td>
<td>192</td>
</tr>
<tr>
<td>44.1</td>
<td>Drawing Sheet Numbering</td>
<td>192</td>
</tr>
</tbody>
</table>
44.2 CAD Drawing File Naming Conventions 193
44.3 Australian Standards 193
44.4 Graphic Symbols 194
44.5 Line work 194
44.6 Line types 194
44.7 Text 194
44.8 Drawing Sheet Size 194
44.9 Paper Space 194
44.10 Entities Outside Drawing Borders 194
44.11 Purging 194
44.12 Orientation 195
44.13 External Referencing 195
44.14 Master List of Suggested Layer Names 195

45. Layering Standards 199
45.1 General 199
45.2 Layer Format 199
45.3 Master List of Suggested Layer Names 200

Appendix 2 201

Appendix 3 202
Introduction

These Planning and Design Guidelines (“Guidelines”) establish the standards and objectives for the planning, design, documentation and construction of facilities for Edith Cowan University.

The Guidelines reinforce the University’s objective to be at the forefront of tertiary education, providing learning opportunities for students supported by current technologies and contemporary facilities.

Consultants are encouraged to recommend solutions that exceed the standards, in particular where the advantages improve:

- education outcomes
- precinct planning principles
- Safety in Design
- constructability
- maintainability cost
- time
- quality
- mitigation of University risk
- environmental impacts

The Guidelines require conformity to all relevant Australian Standards, statutory building requirements and supplementary standards applicable to ECU projects. Where applicable these are referenced in the Guidelines.

Dependent on the type and scale of project, Consultants should liaise with the University and seek agreement as to which sections of this document are relevant.

This document should be read in conjunction with other relevant documentation made available by the Facilities and Services Department, including Campus Master Plans incorporating precinct planning. This information is available through the University’s website at http://www.ecu.edu.au/centre/facilities-and-services.
Building Design

1. **Campus Master Plans**

 For each of its campuses, the University has prepared master plans which are available through the Facilities and Services link on the University’s website. The University’s master plans provide information on:

 - Environmental sustainability
 - Interface with the wider community
 - Movement and services corridors
 - Form & space, including levels across campuses
 - Steps for future development

 The Consultant Team is required to thoroughly review the master plan information and consider as part of the planning and design process.

2. **Precinct Wide Planning**

 Generally, designs should actively respond to key urban design principles, when considering the design of a building within a wider precinct. These key principles could include the following:

 - Climate & site
 - Interface with the public domain
 - Context in relation to the precinct
 - Architectural character
 - Activation of building edges
 - Safety, security and surveillance
 - Access and egress (i.e. building users & maintenance)
 - Campus wide services infrastructure
 - Wayfinding
 - Parking and pedestrian movements
 - Acoustic considerations

 The aforementioned principles are relevant to the University’s Campus Master Plans and should be analysed throughout the building design process.

 The Consultants are to clearly detail how the above considerations have been dealt with through and present as part of design reports at design approval gateways.

3. **Design Approval Process**

 The University has a step-by-step “gateway” process for design approvals. This process is to be followed to ensure that the Facilities & Services Department and User Groups are involved during the design and their sign-off and acceptance of the design is provided. The process is summarised below as follows:

 Gateway 1 - Project Brief

 Gateway 2 - Concept Design
Gateway 3 – Design Development

Gateway 4 - Detailed Design

Gateway 5 – Tender

At each “gateway” the Consultants will submit a design report to the University for review, comment and sign-off. In line with this submission, the Consultants may be required to present to University.

4. Delegation & Delegated Authority

As part of the design approval process, the Consultant Team will need to understand the University's delegation process and protocols. Further information on levels of delegated authority and respective personnel at the University is available at http://intranet.ecu.edu.au/staff/centres/office-of-governance-services/our-services/delegations

Delegated authority is not provided to any member of the Consultant Team, unless advised in writing and approved by the University.

5. Safety in Design (SiD)

The University recognises the importance of planning and design of Projects being undertaken with the consideration of safe construction and maintenance practices. On this basis the Consultants are required to undertake Safety in Design (SiD) reviews throughout the planning and design process, identifying risks, mitigation strategies and latent issues for consideration by the Contractor during construction and the University following handover and building use. The outcomes of these reviews can be in the form of either reports or matrices and should be workshopped with the University as appropriate.

SiD reviews are to be undertaken throughout design phases, incorporated into “gateway” reports and evolve based on the level of design at respective milestones.

SiD reviews will be handed over to Contractors following Contract Award, integrated into their management plans and risk management process, for future updating and handover to the University for its internal facilities management processes.

For further information, the Consultants should refer to the relevant codes and practices to understand the requirements of safe design and obligations of the consultants.

6. Risk Management

The Consultants are required to be actively involved in the risk management process through planning and design. This may require:

- Attendance and contribution as part of risk management workshops with the University and other consultants
- Input into the project risk management process, identifying key risks and strategies to help mitigate and/or manage
7. Project Specifications

As part of the preparation of Project Specifications by the Consultant Team, a review of the proposed Project Specifications against this document will be undertaken by the Consultant Team and presented as part of the Design Report prior to proceeding to tender.

Any departures from this document, noted within the Specifications will need to be approved by the University.

8. General Building Design

The design and construction of each building shall be economical in use of space.

Expensive exterior and interior finishes are to be avoided.

The placing of protruding building services and equipment on building facades and rooftops should be avoided.

Flexibility for future use of building spaces is to be considered an important design parameter and the probable effect on the building and services requirements is to be assessed in relation to future change of use.

External walls, especially off-form concrete walls, are to be ‘anti-graffiti’ treated to 2.5m high or agreed height with Project Manager with a non-sacrificial coating.

Life cycle costs must be minimised as University buildings are to endure for at least 100 years. For life cycle costing analysis, the University recommends a 5% discount rate over a life of 20 years.

Building design should take into account the surrounding landscape and public realm, with the intent of integrating and activating these spaces as best as possible. This is dependent on the type of use of building.

Solar Control
(Refer also Functional Controls, Section 2.3 and the University’s Standard Building Environmental Brief).

Architects must design to screen against solar heat and glare (especially from lower level roofs) on the faces of their buildings and to avoid reflection problems for adjacent buildings.

Where possible, advantage should be taken of sun control devices (horizontal sunscreens, etc.) as access ways for the facilitation of window cleaning.

Fixing battens, pelmet boards or other means should be provided for the fitting of curtains or internal blinds.

Wind around Buildings
For an individual building or groups of buildings architects shall design to avoid problems of wind turbulence. Appropriate analysis / modelling should be undertaken to determine whether issues are present and how they are to be managed through design.
9. Facilities Planning

9.1 Academic, Research and Administrative Workplaces

Workplace planning is to be undertaken to address:

- Functional and ergonomic work environment
- Opportunity for informal and formal collaboration
- Privacy when performing concentrated tasks
- Opportunity for acoustic privacy for meetings and telephone conversations
- Collaborative work practices
- High quality ambient environment
- Appropriate access to book and files storage, including IT infrastructure
- Individual space for displaying notes and other materials
- Opportunity to relax, eat and drink and reflect on work away from workplace

The planning process will address:

- User group work practices
- User group specific needs
- Technical and physical constraints
- Cost and quality requirements
- Other requirements of the University's Planning and Design Guidelines.

The preferred planning outcome may include the following options:

- Office space
- Open plan workplace

Guide descriptions of these planning options and guidelines for physical space provisions are as follows.

9.2 Office Space

An office/room for one occupant with appropriate storage, spread and meeting space to meet the occupant's functional requirements.

Where a single office environment is the preferred planning outcome guideline areas are as follows:

(a) Senior Member University Executive (EG- VP, DVC,PVC) 24-27m²
(b) Executive Staff Academic / General (EG - Dean/Director) 15–18m²
(c) Senior Staff: Academic / General (EG Assoc Dean/Professor/Branch Mgr.) 12-15m²
(d) Academic / Other General Staff with specific need for office space 12-15 m²
(e) Research/Post Doctorate/Academic (part time)Shared Space 6 – 8 m²
(f) Waiting space – to suit functional requirements dependent on above class

Note: A business case approved by Director, Facilities and Services with endorsement from respective Centre Directors will be required for a single dedicated office for professional staff below HEW10. Similarly an approved business case from the Dean and Director, Facilities and Services will be required for academic staff requiring a single of below Academic Level D/E.
9.3 **Open Plan Workspace**

An open area work environment with shared team spaces supported by meeting/retreat spaces.

Where an open plan workspace is the preferred outcome guideline areas are as follows:

(a) **Academic (full time)** 6 – 8m²
(b) **Research/Post Doctorate/Academic (part time)** 6 – 8m²
(c) **General Staff** 6 – 8m²
(d) **Post Graduate Students** 2 – 4 m²
(e) **Support Space:**

- **Storage Space (per occupant)** 1m²
- **Meeting/Collaborative (per occupant)** 2m²

(f) **Waiting Space** – to suit functional requirements dependent on above class

For part-time staff / students, the use of “hot-desking” may be appropriate dependent on the occupants’ timetables.

9.4 **Teaching and Learning Facilities**

As a guideline for preliminary planning the guide areas for Teaching and Learning facilities are as follows:

Lecture Theatres
- Stepped floor- up to 100 2m² / seat
 - above 100 1.7m² / seat

Lecture/Tutorial Rooms 2m² / seat

Minimum room size 30 students

Library
- **Reading space including associated passageways** 0.5 – 1.5m² / EFTSL
- **Open access book stacks including gangways and aisles** 6m² / 1000 volumes
- **Compactus storage areas including aisles** 36m² / 1000 volumes

Areas are measured in accordance with Tertiary Education Facilities Management Association (TEFMA) definitions. Utilisation and areas/student to TEFMA Benchmarks can be provided by the University.

Specific purpose facilities will require analysis and agreement of adjustments with the University based on proposed use.
9.5 Planning

The campus will have the following provision of space by broad functional area:

- Academic: 50%
- Administrative: 12%
- Commercial: 4%
- General Teaching: 12%
- Library: 5%
- Student Services: 13%
- Other: 4%

Planning solutions for individual buildings will be benchmarked against this ratio across the Campus.

10. Sustainable Design

10.1 Introduction

The purpose of these Sustainability Guidelines is to provide guidance to designers in respect to Ecological Sustainable Design ("ESD"). ESD means to design buildings with longevity and minimal impact on the existing biodiversity and there are three key ways to achieve this:

(a) Compliance with the six environmental performance indicators, see section 3.2.

(b) Incorporating Green Star building design features to a minimum standard of 4 stars with the target of reaching 5 stars. Please see section for further info on how ECU incorporates Green Star features into its building design. Please note ECU does not apply for Green Star accreditation certificates but does aim to incorporate green star design features into its building design.

(c) Meeting the requirements for design documentation and review according to the process shown in section 3.3.

This document provides a step-by-step guide which will allow the design to be reviewed prior to proceeding to the next stage of design development. However this section is not a complete guide to the sustainable features to be included in building design and for a complete understanding of sustainable building features this section must be read in conjunction with other sections of the Guidelines.

This document is a guide to the various green building approaches and technologies available to designers. There are many guidelines and case studies, and much literature on this subject, and designers are expected to be aware of best practice and able to apply it to ECU projects.

10.2 Environmental Performance Indicators

The following environmental performance indicators established by ECU are to apply to all building projects. Additional indicators may be established for specific projects.

Thermal Comfort

Objective: To ensure the thermal comfort of building occupants in normal operating conditions

Indicator: Predicted Mean Vote (PMV) as measured in accordance with ISO 7730

Target: PMV in the range of -1 to +1
Indoor Air Quality
Objective: To ensure indoor air is free from contaminants and contains ample amounts of fresh air
Indicator: Indoor CO2 concentration
Target: 700 ppm (average over 8 hour period)

Materials Intensity
Objective: To minimise the energy embodied in construction materials
Indicator: Embodied Energy (GJ/m2) as calculated in accordance with Appendix 1 (a)
Target: To be established during the Concept Design phase
[Nominally in the range 14-18 GJ/m2]

Operational Energy Consumption
Objective: To minimise the total energy consumed within the building
Indicator: Energy consumption (MJ / m2 pa) calculated in accordance with Appendix 1 (b)
Target: To be established during the Concept Design phase
[Nominally in the range 290-323 MJ / m2 pa]

Greenhouse Gas Emissions
Objective: To minimise the emissions of greenhouse gases from energy sources
Indicator: Greenhouse emissions (T CO2-e / m2) to be calculated in accordance with Appendix 1 (c)
Target: To be established during the Concept Design phase
[Nominally in the range 79-88T CO2-e / m2]

Scheme Water Consumption
Objective: To minimise the consumption of water from scheme sources
Indicator: Potable water consumption (L / day /m2) to be calculated in accordance with Appendix 1 (d)
Target: To be established during the Concept Design phase
[Nominally in the range 0.20 - 0.25 L / day /m2]

10.3 Design Process
Optimal sustainability outcomes will only be achieved through an integrated design approach which involves collaboration between all consultants at all stages of design.

The Consultants will establish working arrangements which establish clear design responsibilities for each of the sustainability objectives, including how multi-disciplinary teams will work together to achieve the desired outcomes.

The steps and design process to achieve the final design are as follows:

Step 1: Preliminary Analysis
Step 2: Establishment of Sustainability Targets (incorporated into the Project Brief)
Step 3: Concept Design
Step 4: Schematic Design
Step 5: Detailed Design and Documentation
Step 6: Construction and Commissioning
Step 7: Post Occupancy Evaluation
The sustainability objectives are to be defined during the Briefing stage of the project, with clear indication of how each of the targets are to be reported against at each stage of the abovementioned process.

Further explanation of each stage is contained in the following sections.

Figure 1: Flow chart showing the design process:

10.4 Preliminary Analysis

A full analysis of all factors affecting the design is required before the process of developing building concepts is commenced. Figure 1 sets out the issues to be considered. A brief report setting out the findings of this analysis shall be provided to ECU prior to commencement of Concept Design. Although this analysis will be relevant to many aspects of design, the report should particularly establish the opportunities for, and constraints to, achievement of sustainability objectives.

In particular the following should be carefully evaluated during the analysis phase in respect of sustainability opportunities / constraints.

Site

Geotechnical Conditions: opportunities for ground coupling, groundwater for non-potable water, presence of rock material impacting structural design considerations

Environmental Conditions: understanding of whether ground conditions pose a risk to health or the environment, resulting in landfill disposal requirements and importation of clean fill material from off-site sources
Ecology: protection of important ecological assets including existing vegetation and trees with significant habitat features are to be incorporated into building design.

Topography: exposure to prevailing winds/storms, opportunities for incorporating existing and proposed topography to create thermal mass around the building.

Climate
It is ECU’s objective to ensure that all buildings are designed to be responsive to the change in Perth’s climate, which will require modelling of the design to evaluate performance against the sustainability indicators.

The climate analysis will include:
- Average temperatures rising by up to 2°C over the next 30 years. Hotter more humid climatic conditions.
- An assessment of the micro-climate at the site will be necessary to ensure that local factors are properly considered, thermal imagery will be required to identify hot spots in the building.
- Existing Infrastructure.

In order to ensure that the concept design properly evaluates opportunities for alternative approaches to service provision, a thorough analysis of the infrastructure existing on the campus, and in the surrounding area will be required, including:

Water: Maximise the use of rainfall and harvesting water if feasible, minimise the use of groundwater resources and scheme water. ECU encourages designers to investigate the option of recycling water within buildings.

Wastewater: Ensure wastewater infrastructure does not pollute or create contamination to waste water resources. Aim to reuse wastewater on site where possible to reduce the consumption of scheme water.

Drainage: Incorporate rainwater/stormwater capture into building design, consider water sensitive urban design, including integration into landscape design.

Power: Incorporate renewable energy options into building design as a way of reducing carbon emissions and at least 5% of the total power usage with photovoltaic technology.

Telecoms: Communications, building control potential.

10.5 Establishment of Sustainability Targets
The results of the preliminary analysis provide an initial evaluation of the constraints and opportunities to meet and inform ECU’s core sustainability performance objectives.

This information should be considered in conjunction with:
- Performance data from other similar ECU buildings, and other relevant education building projects available;
- The Green Star – Education rating tool, the NABERS scheme and other relevant green building evaluation schemes; and
- Best practice examples of sustainable building design in Australia or overseas.

This information will be used to confirm / expand the core performance objectives and indicators set out above, and determine appropriate targets for each indicator. This process will occur in a workshop involving key members of the Consultant team and ECU, and be documented.

Targets will be set on the basis of both environmental performance and project cost, including the impacts on project quality outcomes. Although the cost implications of various targets may not be able to be accurately assessed at this stage, a qualitative estimate of both capital and life cycle costs shall be made.

At this stage, before any significant design analysis has commenced, it may not be possible to set targets for all indicators, e.g. energy consumption or greenhouse gas emissions. In this case an interim target will be set, and confirmed or modified at a later stage of the design. Initial advice should be sought from the appropriate consultant to set interim targets based on the specific building type.

10.6 **Concept Design**

During the early stages of the Concept Design phase an emphasis should be placed on developing a building plan that optimises the passive performance of the building, and hence minimises the loads on the active building systems, particularly heating, cooling, ventilation and lighting. This process is the foundation of energy efficient building design.

With the key loads identified, the development of options for building systems will then be undertaken. Building materials will be selected to achieve the required characteristics in respect of thermal performance and embodied energy as well as architectural and structural considerations.

The achievement of optimal sustainability outcomes requires a fully integrated design approach, with architects and engineers working closely together. The following sections outline the key aspects to this integration.

Passive Building Performance

Without the influence of active systems the key indoor characteristics of a building (thermal comfort, air quality, light and views) are a function of:

- **Building Plan / Sections** Location on site, Space Configuration, Orientation, Relationship with other buildings etc.
- **Building Form** Building height, Thermal Mass, Openings / Glazing, Shading, Insulation, Natural Ventilation
- **The Climate** Temperature, Humidity, Wind, Rainfall, and Solar isolation.

Consideration of these factors should be central to development of the early concepts. Computer modelling is likely to be required during this stage to efficiently consider alternative building plans/sections/forms, particularly with respect to thermal comfort, natural ventilation and day lighting.

This process will be architect-led but will involve Engineering input as required.
A design workshop will be held early in the Concept Phase with ECU to present and discuss alternative building plans/sections/forms in light of the project’s sustainability indicators and targets, and capital and lifecycle cost implications.

Building Systems Concepts

Development of alternative building plans/sections/forms, together with the functional requirements of the project will establish approximate building system loads, e.g. ventilation, heating / cooling, lighting, fire, communications.

The development of design concepts for ventilation, heating / cooling and lighting will be mainly informed by thermal comfort, air quality, energy and water efficiency objectives.

Materials

Development of alternative building plans/sections/forms will establish the requirements for materials in respect of the structural and thermal performance of materials and sections. This, together with the functional requirements of the project will enable preliminary materials selection to occur.

Options to be evaluated will be mainly informed by the materials intensity objectives, which will require an understanding of the embodied energy of various materials.

Materials are to be sourced locally and/or from reused materials as a first preference to reduce the embodied energy of the product. Suppliers to provide information on where the product comes from, how it was made and to be incorporated into the Environmental Management Plan.

Finalising the Concept

A workshop will be held with ECU just prior to completion of the Concept Design phase. In this workshop the Consultant Team will present the various alternative concepts considered and discuss their performance against the following:

- The project’s functional requirements;
- The sustainability objectives/targets; and
- Capital and lifecycle costs

This workshop will confirm the sustainability targets to be achieved on the project, and provide guidance to the Consultant Team for finalising the Concept Design.

The Concept Design deliverables will include a sustainability report containing the Preliminary Analysis, the establishment of Project Targets, documentation of the alternatives considered, and a justification of the proposed Concept based on functional, sustainability, quality and cost considerations.

10.7 **Schematic Design**

Design Development

Further development of the design will involve the refinement of the Building Plan / Sections; the Building Form, and its Materials.

Computer Modelling / Simulation

Computer modelling will be used to evaluate the environmental performance of the building and to evaluate options to minimise the capacity of active systems. Energy modelling will follow the Green Star / NABERS Energy simulation validation protocol.
The modelling will facilitate the refinement of the building systems including Ventilation, Heating / Cooling, Water, Wastewater, Lighting, Fire Control and Communications. Again, alternative options shall be considered and compared, using the sustainability targets as a guide.

Site Infrastructure
Consideration of the buildings systems will also inform, and be informed by potential options with respect to site infrastructure, including Water, Wastewater, Drainage, Power and Telecoms.

Finalising Schematic Design
A workshop will be held with ECU just prior to completion of the Schematic Design phase. In this workshop the Consultants will present the various alternative concepts considered and discuss their performance against the following:
- The project’s functional requirements;
- The sustainability objectives / targets; and
- Capital and lifecycle costs

This workshop will confirm the design solution and provide guidance to the Consultants for documenting the project.

The Schematic Design deliverables will include a sustainability report outlining the process of design development, documentation of the alternatives considered, and a justification of the proposed Scheme based on functional, sustainability, quality and cost considerations.

10.8 Detailed Design and Documentation

Design Optimisation
The first part of the documentation phase of the project involves the further refinement of Building Plan / Sections, Building Form, Materials, Building Systems and Site Infrastructure with a view to optimising the building as an integrated system.

The optimisation process will involve further computer modelling and other evaluation of the building performance against the selected sustainability targets.

Building Systems Commissioning and Management Review
Prior to finalising the design solution, a review will be undertaken with the participation of ECU to ensure that the strategy for equipment selection, commissioning of the building systems and their post-construction management is resolved and agreed, including:
- Measurement (including metering);
- Control of the building’s active systems;
- Commissioning requirements;
- Systems monitoring and tuning through the Defects Liability Period, handover to ECU and post occupancy.

Contract Documentation
Prior to the completion of the Contract Documentation a review will be undertaken with the participation of ECU to ensure that the drawings, specifications and contract requirements are comprehensive in respect of the sustainability elements of the design and will result in the realisation of the sustainability performance targets.
The contract documents will include the requirements of the Contractor in respect of best practice construction waste management, including the preparation of a Waste Management Plan.

The specifications will include a “Sustainability” section which will set out the sustainability objectives and targets and outline the relevant design measures with reference to key drawings and specifications, including those related to commissioning and tuning of the building systems. This will stipulate the requirements of the Contractor to achieve sustainability targets during construction.

Rating Scheme Documentation

If the project is seeking certification to Green Star or other rating schemes, the preparation of the necessary documentation will proceed in parallel with the Contract Documentation process.

Sustainability Report

As part of the project deliverables a sustainability report will be prepared which incorporates the reporting at Concept and Schematic Design stage and outlines the final design solution and how it will achieve the sustainability objectives and targets.

In particular the report will set out the strategy for measuring, monitoring and management of the building’s systems and the contractual arrangements for commissioning, tuning and handover to ECU.

10.9 Construction and Commissioning

Construction Management

Management of the construction phase will be structured to ensure that the sustainability objectives and targets will be achieved. In particular the following will be considered:

- Construction Waste Management Plan - development, approval and monitoring
- Environmental Management Plan – development, approval and monitoring
- Review Contractor’s Submissions - for equipment and materials
- Building System’s Commissioning – preparation and supervision

Building Users Guide

During the construction phase a comprehensive Building Users Guide will be prepared. The guide will describe the design measures taken to achieve the sustainability targets, outline how the building systems work and describe how building users and occupants operate the building to ensure optimal performance and efficiency.

The Building Users Guide will be prepared as an online resource suitable for all users and occupiers. It will provide an appropriate link to detailed Operations and Maintenance Manuals for use by ECU’s facilities management team.

The Building Users Guide will also include a section on the measures that will be undertaken at post-occupancy to evaluate the performance of the building as set out below.
Sustainability Report

An addendum to the sustainability report will be prepared at the time of practical completion, which takes into account any modifications to the design arising from construction or clarifications necessary following commissioning and building tuning. This is to be prepared in conjunction between the Consultant Team and Contractor.

10.10 Post Occupancy Evaluation

Prior to Practical Completion a workshop will be held involving ECU facilities management staff, the key members of the design / construction teams and equipment suppliers to establish an appropriate approach to post occupancy evaluation.

Measures will be identified to evaluate the post-occupancy performance of the building against the required functional characteristics of the building and the sustainability targets. These measures will involve a combination of measurement and monitoring of the building’s systems and surveys of occupants and ECU’s facilities management staff.

The post occupancy evaluation methodology will be incorporated in the Building User’s Guide.

Appendix 1

a) Calculation of Embodied Energy

Embodied Energy Calculation

An example of a calculation used to determine embodied energy can be found at http://thegreenestbuilding.org/

Embodied Energy Target Setting

Due to the lack of benchmarked data and potential complexity of embodied energy calculations it is envisaged that the scope of embodied energy calculations will be limited to the main sources of energy / emissions.

The main focus for target setting is:

- To ensure the design achieves better outcomes than conventional practice; and
- To compare different building systems / materials selections; rather than the achievement of any particular target embodied energy figures.

Accordingly it is envisaged that targets will be set as a result of option studies during concept design.

The summary of embodied energy calculations from various case studies by RMIT quotes an EE figure of 15.76 GJ/m² for an educational facility.
ECU B21 Health & Wellness Building - Embodied Energy

<table>
<thead>
<tr>
<th>Groundwork</th>
<th>Qty</th>
<th>Unit</th>
<th>EE coeff</th>
<th>Unit Embodied Energy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excavation</td>
<td>1,341</td>
<td>m3</td>
<td>0.036 GJ/m3</td>
<td>48 GJ</td>
</tr>
<tr>
<td>Rock excavation</td>
<td>20</td>
<td>m3</td>
<td>0.036 GJ/m3</td>
<td>1 GJ</td>
</tr>
<tr>
<td>Fill (sand)</td>
<td>1,040</td>
<td>m3</td>
<td>0.036 GJ/m3</td>
<td>37 GJ</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>86 GJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural Steel & Metalworks</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel</td>
<td>994</td>
<td>t</td>
<td>64.6 GJ/t</td>
<td>64,202 GJ</td>
</tr>
<tr>
<td>Reinforcing steel</td>
<td>635</td>
<td>t</td>
<td>64.6 GJ/t</td>
<td>41,000 GJ</td>
</tr>
<tr>
<td>Structural steel</td>
<td>358</td>
<td>t</td>
<td>64.6 GJ/t</td>
<td>23,106 GJ</td>
</tr>
<tr>
<td>Galvanised steel</td>
<td>1.5</td>
<td>t</td>
<td>64.6 GJ/t</td>
<td>97 GJ</td>
</tr>
<tr>
<td>Aluminium</td>
<td>569</td>
<td>t</td>
<td>159.5 GJ/t</td>
<td>90,782 GJ</td>
</tr>
<tr>
<td>Wall cladding</td>
<td>25</td>
<td>t</td>
<td>159.5 GJ/t</td>
<td>3,985 GJ</td>
</tr>
<tr>
<td>Sun control screens</td>
<td>519</td>
<td>t</td>
<td>159.5 GJ/t</td>
<td>82,813 GJ</td>
</tr>
<tr>
<td>External windows and doors</td>
<td>25</td>
<td>t</td>
<td>159.5 GJ/t</td>
<td>3,984 GJ</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>154,985 GJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concrete</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Concrete</td>
<td>5,130</td>
<td>m3</td>
<td>0.4 GJ/m3</td>
<td>2,052 GJ</td>
</tr>
<tr>
<td>Precast concrete</td>
<td>300</td>
<td>m3</td>
<td>0.4 GJ/m3</td>
<td>120 GJ</td>
</tr>
<tr>
<td>In-situ concrete</td>
<td>4,790</td>
<td>m3</td>
<td>0.4 GJ/m3</td>
<td>1,916 GJ</td>
</tr>
<tr>
<td>Piles</td>
<td>31</td>
<td>m3</td>
<td>0.4 GJ/m3</td>
<td>12 GJ</td>
</tr>
<tr>
<td>Cavity fill</td>
<td>10</td>
<td>m3</td>
<td>0.4 GJ/m3</td>
<td>4 GJ</td>
</tr>
<tr>
<td>Blockwork</td>
<td>80</td>
<td>m2</td>
<td>0.21 GJ/m2</td>
<td>17 GJ</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>2,052 GJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building Envelope</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Plastering (3:1 ratio)</td>
<td>19</td>
<td>m3</td>
<td>4.4 GJ/m3</td>
<td>83 GJ</td>
</tr>
<tr>
<td>Brickwork & Mortar</td>
<td>7,939</td>
<td>m2</td>
<td>0.75 GJ/m2</td>
<td>5,954 GJ</td>
</tr>
<tr>
<td>Limestone</td>
<td>34,816</td>
<td>kg</td>
<td>0.3 MJ/kg</td>
<td>10 GJ</td>
</tr>
<tr>
<td>Glazing</td>
<td>26</td>
<td>t</td>
<td>13.9 GJ/t</td>
<td>358 GJ</td>
</tr>
<tr>
<td>Roofing & Wall Cladding</td>
<td>17</td>
<td>t</td>
<td>64.6 GJ/t</td>
<td>1,089 GJ</td>
</tr>
<tr>
<td>Sheet steel</td>
<td>17</td>
<td>t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glasswool batts</td>
<td>6,881</td>
<td>m2</td>
<td>0.097 GJ/m2</td>
<td>667 GJ</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>8,163 GJ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paving & Tiling (Internal Finishes)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Carpet</td>
<td>6,991</td>
<td>m2</td>
<td>0.804 GJ/m2</td>
<td>5,621 GJ</td>
</tr>
<tr>
<td>Floor vinyl</td>
<td>2,358</td>
<td>m2</td>
<td>0.2 GJ/m2</td>
<td>472 GJ</td>
</tr>
<tr>
<td>Wall vinyl</td>
<td>151</td>
<td>m2</td>
<td>0.2 GJ/m2</td>
<td>30 GJ</td>
</tr>
<tr>
<td>Ceramic tiles</td>
<td>1,264</td>
<td>m2</td>
<td>0.29 GJ/m2</td>
<td>367 GJ</td>
</tr>
<tr>
<td>Stone tiles</td>
<td>17,983</td>
<td>kg</td>
<td>5.9 MJ/kg</td>
<td>106 GJ</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td>6,595 GJ</td>
</tr>
</tbody>
</table>

Total embodied energy	171,881	GJ	
Total floor area	10,550	m2	
Total Embodied Energy/m2	16,292	MJ/m2	
	16.3	GJ/m2	

Exclusions
The following items from the Bill of Quantities were excluded:

- Formwork
- Handrails & Balustrades
- Gutters
- Stud work wall framing
- Projection screens
- Lift Services
- Waterproofing
- Toilet accessories
- Hydraulic Services
b) **Operational Energy**

Operational Energy Calculation

The calculation of operational energy consumption will be based on energy modelling of the building in accordance with the Green Star / NABERS Energy simulation validation protocol.

Operational Energy Targets

Targets will be set during the concept design phase and shall be based on the achievement or the exceeding of best practice for the particular type of building under consideration.

It is expected that targets will meet or exceed the “conditional requirements” determined from the Green Star Education energy calculator.

Green Star – Education v1 Energy Calculator determines the benchmark for each project based on the composition of space types within each project. The conditional requirements are:

<table>
<thead>
<tr>
<th>Universities Conditional Requirements</th>
<th>(kgCO₂-e/m²/annum)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching/classroom spaces</td>
<td>82</td>
</tr>
<tr>
<td>Dry labs/specialty learning spaces and libraries</td>
<td>88</td>
</tr>
<tr>
<td>Office/administrative spaces</td>
<td>79</td>
</tr>
<tr>
<td>Common spaces</td>
<td>57</td>
</tr>
<tr>
<td>Wet labs (varies based on density of fume cupboards)</td>
<td></td>
</tr>
<tr>
<td>Gymnasiums</td>
<td>143</td>
</tr>
<tr>
<td>Car parks</td>
<td>52</td>
</tr>
</tbody>
</table>

The methodology used to establish the conditional requirement for each space type is detailed in the Green Star – Education v1.

Energy Calculator Standard Practice Benchmark document available on the GBCA website. The predicted greenhouse gas emissions must be determined using energy modeling in accordance with the final and current version of the Green Star – Education v1 Energy Calculator.

c) **Greenhouse Gas Emissions**

Greenhouse Gas Calculation Method

Base calculation – operational energy

Greenhouse gas emissions shall be calculated from the Green Star Education energy calculator. Although the Green Star calculations include an allowance for on-site renewable energy generation, this should not be included in the Base calculation.
Net calculation

The net greenhouse calculation shall be the Base calculation, less the following:

- The proportion of electrical energy to be purchased under the Green Power scheme in accordance with ECU’s contemporary environmental policy;
- Any onsite renewable energy generation.
- Any project specific carbon offset initiative (methodology to be in accordance with the Voluntary Carbon Standard.

Greenhouse Gas Target

The greenhouse gas target will be set during the Concept Design phase during which options will be considered for the building’s thermal performance, energy demand management, energy efficient equipment, low carbon energy sources, renewable energy, ECU’s policy in respect of Green Power purchase and carbon offsets.

It is expected that targets will meet or exceed the “conditional requirements” determined from the Green Star Education energy calculator.

d) Potable Water Consumption

Potable Water Calculation

Potable water consumption shall be calculated from the Green Star Education calculator. The Green Star calculations include an allowance for on-site rainwater, grey water and black water use but do not include any provision for use of stormwater or groundwater, and separate account for these sources will need to be made.

Potable Water Targets

The potable water target will be set during the Concept Design phase during which options will be considered for substituting potable water with rainwater, stormwater, groundwater, grey water and / or black water for approved non-potable uses in the local jurisdiction.

It is envisaged that the target set will achieve at least 3 points as calculated by the Green Star Education calculator.
11. Acoustic Requirements

The intention of this Acoustic Brief is to establish design standards for the acoustics of new university buildings.

11.1 Acoustic Terminology

Rw = Weighted Sound Reduction Index (Previously STC – Sound Transmission Class)
Is a measure of the acoustic effectiveness of a building partition, door, floor or other building element with regards to reducing airborne noise transmission from one side of the element to the other (i.e. single pass). This value is the ‘design rating’ of the element, as established via measurements in an acoustic laboratory in accordance with relevant Australian Standards. It is often referred to as a measure of the airborne sound insulation provided between two spaces.

D'ntw = Weighted Standardised Level difference (Previously FSTC)
Is similar to the Rw value, except that values are established via field measurements. It is recognised that normal building tolerances and flanking transmission paths have an effect on building elements when installed, generally resulting in a reduction in the field measured values. It is common for the D'ntw of a partition system to be approximately 5 points lower than the Rw results of the same system tested in a controlled laboratory environment.

Dncw = Weighted suspended ceiling normalised level (Previously CAC)
Previously expressed as the Ceiling Attenuation Class, this is a measure of the acoustic effectiveness of a ceiling system with regards to reducing airborne noise transmission from one room to another, through a common ceiling space. This value is the laboratory rating of the element, as established via measurements in accordance with relevant Australian Standards.

LAeq = “A-weighted” equivalent continuous noise level
This is the constant sound level over a stated time period, which is equivalent in total sound energy to a variable sound level over the same time period. Often simply referred to as the ‘average sound level’ for a given time interval.

Note - Current Australian Standards use Leq noise levels for ‘architectural acoustic’ criteria, including noise from ‘mechanical systems’ etc. Noise Rating (NR) curves previously used for the assessment of noise from mechanical services are no longer commonly used, and are not included in current Australian Standards.

RT = Reverberation Time
RT is a common measure of the acoustical environment achieved in a space. It is the time taken in seconds for sound energy to decay by 60 dB. Reverberation control is typically required to enable clear speech communication in spaces, or to control general ‘noisiness’ in open plan and public spaces.

11.2 Compliance with Codes and Standards

Unless otherwise required, the consultant shall execute all work undertaken in accordance with the relevant Australian Standards, Building Codes, Acts, etc and the Building Code of Australia.

However, many acoustic standards are not covered by the above and if not already included in this Design Brief, will need to be specifically developed by the consultant for the project (in consultation with the appropriate client representatives) based on the functional use of the building and surrounding facilities / spaces.
11.3 Implementation for Existing Facilities

It is recognised that implementation of all acoustic requirements may not be possible in retrofit / refurbishment of existing buildings. Where major building elements are to be modified, the changes must be in accordance with current acoustic standards. Where a change affects another space, the acoustic conditions of that space must not be downgraded. In some cases the other space will require upgrading to meet current standards, dependent on the usage and scale of works.

11.4 Planning

Objective – To ensure that due consideration is given to cost effective planning options that support good acoustic design, reducing the requirement for more costly technical construction solutions.

There is a diverse range of technical acoustic requirements for spaces throughout university facilities. Planning is often fundamental in achieving a good acoustic environment within an educational building. It is usually possible to plan new buildings to avoid expensive technical solutions, in the achievement of acceptable acoustic conditions. The ‘noise sensitive’ or ‘noise intensive’ nature of specific areas requires careful consideration from the earliest stages of a design.

Some general planning issues that should be considered at the earliest stages include:

- External noise sources such as road traffic or external activities (i.e. public spaces, retail areas, areas subject to heavy foot traffic).
- Noise emission from mechanical equipment and plant rooms, including lift motor rooms, chillers / condensers, air handling plant, fume / dust extractors, pumps & tanks, etc.
- Avoid location of ‘noise sensitive’ spaces adjacent to ‘noise generating’ spaces. For example - keep spaces with low tolerance to noise intrusion such as private offices and teaching spaces acoustically separated from noisy spaces such as plant rooms.

11.5 Environmental Regulations (Noise)

Objective – To control noise emissions from facilities to meet the requirements of the Environmental Protection (Noise) Regulations 1997 r 5, 7-9, 11-14A, 14, 15, 16, 16AA, 16BA, 17, 18, 18B, 19B; sched 2, (as amended).

These regulations set the maximum permissible sound level allowed at ‘neighbouring premises’, for various times of the day. All aspects of these regulations must be met in full. The major design issues to be considered include:

- Noise emission from external plant and equipment, including refrigeration plant, chillers / condensers, fume / dust extraction, emergency generators etc.
- Noise break-out from enclosed mechanical equipment and plant rooms, particularly via ventilation paths.
- Breakout noise from enclosed activity areas, including; i) spaces where music or audio equipment are accommodated ii) spaces incorporating use of workshop type equipment including cut off saws, grinders and similar.
- Noise emission from outdoor activity, including live performance, amplified music etc.
- Noise emission from service / loading areas, including driveways.

These issues must be considered at the earliest design stages. In particular, the project Mechanical Consultant must give due consideration to the location of significant external mechanical plant, and the potential for environmental noise emissions to neighbouring premises as well as adjacent university buildings.

NOTE:
There are no formal regulations or design standards regarding control of noise emissions to pedestrian or outdoor areas within a property (campus). However, a useful guide to maintain general amenity is as follows:

Noise received at façade of adjacent university building; ≤ LAeq 50 dB (A)]
- Noise received at general transient / pedestrian areas; ≤ LAeq 50 dB(A)
- Noise received at general purpose courtyards; LAeq ≤ 45 dB(A)

It must be noted that these levels will still be considered to be clearly audible when ambient conditions are otherwise quiet. More stringent requirements may be appropriate for specific outdoor areas such as amphitheatres or ‘special use’ courtyards etc. Requirements for these spaces are to be determined on a project-by-project basis.

11.6 Indoor Ambient Noise Levels

Objective – to ensure appropriate indoor ambient noise levels are achieved in various spaces, relative to the acoustic sensitivity of proposed activity.

The background or ‘ambient’ noise levels within unoccupied spaces shall not exceed the levels set in Australian Standard AS/NZS 2107 "Acoustics - Recommended Design Sound Levels and Reverberation Times for Building Interiors".

The ‘design sound levels’ recommended in this standard relate to the background noise level in a room as a result of noise from the following sources:

Building Services
- Ventilation and air-conditioning systems
- Hydraulic services / plumbing
- Lighting and other fixed electrical equipment

External Sources
- Road traffic
- Pedestrian traffic / public space use
- Neighbouring industrial and commercial operations
- Externally located plant
- Activity noise from adjacent facilities located on the campus

Activity noise from adjacent spaces

Consideration should also be given to the potential noise levels and noise character generated by the normal range of activities within the building. The control of room-to-room noise transfer is addressed by the airborne sound insulation requirements defined in section 10 of this Acoustic Brief. This intention is that noise intrusion as a result of activity noise should not exceed the maximum LAeq levels set out in AS/NZS2107, based on assessment period of LAeq, 30 min.
Rain Noise

Rain noise on metal roofing and stormwater disposal (including box gutters and downpipes) generally requires special consideration. This issue may require in-depth acoustic design, depending on the use of potentially effected spaces. As a general guide, noise intrusion to ‘noise sensitive’ spaces such as Lecture Theatres and general purpose Auditoria should not exceed the recommended ‘design sound levels’, as summarised in Table 1 (below). For Offices and Flexible Learning Spaces, levels up to 5dB above the stated ‘satisfactory’ criteria are likely to be acceptable.

Table 1 sets out a summary of relevant ‘design sound levels’, based on AS/NZS 2107 "Acoustics - Recommended Design Sound Levels and Reverberation Times for Building Interiors”.

Table 1 - Design Sound Levels

<table>
<thead>
<tr>
<th>Type of Occupancy or Activity</th>
<th>Recommended ‘design sound level, LAeq dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Satisfactory</td>
</tr>
<tr>
<td>EDUCATIONAL</td>
<td></td>
</tr>
<tr>
<td>Audio Visual Areas</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>Cafeterias</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>Computer Rooms</td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Laboratories</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>Conference Rooms</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>Corridors and Lobbies</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>Flexible Teaching Spaces</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>Gallery Spaces</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Gymnasiums</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>Interview / Student support</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Laboratories</td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>Working</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Lecture Rooms (up to 50 seats)</td>
<td>30 dB(A)</td>
</tr>
<tr>
<td>Lecture Theatres</td>
<td></td>
</tr>
<tr>
<td>Without speech reinforcement</td>
<td>30 dB(A)</td>
</tr>
<tr>
<td>With speech reinforcement</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>Libraries</td>
<td></td>
</tr>
<tr>
<td>General Areas</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Reading Areas</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Stack Areas</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>Toilets</td>
<td>50 dB(A)</td>
</tr>
<tr>
<td>Video Conference</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>MUSIC / PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>Recording Studios #1</td>
<td>25 dB(A)</td>
</tr>
<tr>
<td>Music Studio</td>
<td>30 dB(A)</td>
</tr>
<tr>
<td>Drama Studios</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>Dance Studio</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Ensemble Room</td>
<td>35 dB(A)</td>
</tr>
<tr>
<td>Small Practice / Tutorial Room</td>
<td>40 dB(A)</td>
</tr>
</tbody>
</table>
Performance / Recital Space *(including 'multi-purpose auditoria')*
<table>
<thead>
<tr>
<th></th>
<th>30 dB(A)</th>
<th>35 dB(A)</th>
</tr>
</thead>
</table>

OFFICE ACCOMMODATION

<table>
<thead>
<tr>
<th></th>
<th>30 dB(A)</th>
<th>40 dB(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board / Conference Rooms</td>
<td>45 dB(A)</td>
<td>50 dB(A)</td>
</tr>
<tr>
<td>Corridors and Lobbies</td>
<td>40 dB(A)</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>General /Open Plan Offices</td>
<td>35 dB(A)</td>
<td>40 dB(A)</td>
</tr>
<tr>
<td>Private Offices</td>
<td>55 dB(A)</td>
<td>65 dB(A)</td>
</tr>
<tr>
<td>Reception Areas</td>
<td>40 dB(A)</td>
<td>45 dB(A)</td>
</tr>
<tr>
<td>Undercover Carpark</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES

1 Any space that accommodates recording facilities requires a project specific brief to be developed by the project Acoustic Consultant, depending on the standard of studio required.

11.7 Mechanical Acoustics

Objectives

(a) to ensure noise from mechanical equipment is not considered intrusive and does not negatively impact on activity in a space.

(b) to avoid situations where mechanical systems downgrade the acoustic integrity of acoustically rated construction elements.

Design Sound Levels

As set out in Section 3 above, the background noise level resulting from operation of mechanical plant should not exceed the levels set in Australian Standard AS/NZS 2107.

Tonal and intermittent noises are often considered to be more intrusive than other types of noise at the same level. Noise intrusion from mechanical sources to ‘noise sensitive’ spaces from equipment should therefore be constant in nature and must not contain significant tonal or intermittent characteristics. Tonality should be addressed in accordance with the procedure set out in AS/NZS 2107.

Fan noise, breakout noise, regenerated noise, radiated noise and any other acoustic/vibration emissions need to be considered.

Supply and return air paths must be checked to ensure that sound isolation between spaces is not compromised via ‘cross talk’ type sound transmission. Where necessary appropriate silencers or other suitable methods of sound attenuation must be provided.

The mechanical system and equipment acoustics (serviced room noise levels) form part of the Mechanical Consultants scope of work, including duct-borne noise transmission. This is because the acoustic design of the ductwork and required attenuation is integral to the system design, and must be addressed by the mechanical engineer from the outset of the proposed mechanical scheme.

The Acoustic Consultant shall address radiated airborne noise from mechanical equipment that impacts other issues such as building acoustics, privacy or environmental noise, with appropriate liaison with the Mechanical Consultant.
NOTE
Ambient noise levels significantly lower than the ‘satisfactory’ design sound level criteria may in fact be detrimental to speech privacy in office spaces etc. The constant ‘broad band’ noise associated with normal operation of ventilation systems often provides highly desirable ‘masking noise’, effectively improving the speech privacy achieved between spaces. The project Mechanical Engineering Consultant must advise the project Acoustic Consultant of private offices, interview rooms, or other spaces requiring ‘speech privacy’ where the duct-borne noise level is likely to be ≥ 5 dB lower than the ‘satisfactory’ level set out in Table 3. (Refer to Section 4.11 – Speech Privacy).

Maintaining Acoustic Integrity of Construction Elements
In areas requiring acoustic isolation or speech privacy it is essential that the mechanical ductwork and air transfer systems do not downgrade the acoustic performance of the architectural barrier systems provided. All penetrations through the acoustic rated walls and ceilings are to be fully sealed or provided with appropriate acoustic attenuation treatment.

Of particular concern are:

Ceiling Return Air Systems: Where walls are not full height it is common for the ceiling system to be specified to achieve a particular acoustic barrier performance (Dncw / CAC), to control excessive room-to-room transmission via a ceiling void. It follows that the use of the ceiling void as a return air plenum is potentially problematic, as without proper detailing this arrangement can allow excessive flanking sound transmission through the ceiling space, over partition walls. This will significantly downgrade the sound transmission loss performance between areas. If a ceiling return air system is to be used, then acoustic treatment will be required to all ceiling penetrations. Return air grilles direct into the plenum are unlikely to be acceptable, and typically require full acoustic transfer boots or similar treatment.

Lineal Diffusers: Continuous lengths of lineal diffuser, which run right up to or across partition walls must not be used. Where lineal diffusers are required, they must be limited only to the length required for air transfer, and their full extent must be connected to a cushion head in the ceiling space above. Any area of linear grille not connected directly to a duct or boot must be effectively sealed ‘airtight’.

Door Grilles: All types of door grilles significantly downgrade the acoustic performance of doors and must not be used in solid core doors to spaces requiring acoustic isolation / speech privacy. Where air relief is required, it must be via acoustically treated ductwork through the walls or ceiling, so as not to downgrade the acoustic integrity of these construction elements.

11.8 Hydraulic Noise

Objective – to ensure noise from hydraulic services is not considered intrusive and does not negatively impact on activity in a space.

Plumbing noise can be intrusive at low sound levels because of its informational content and ease of propagation via structure-borne paths. For an acceptable work environment it is essential that all plumbing noise sources be considered.

Planning is the key to effective control of plumbing noise. Identify all hydraulic noise sources in spaces adjacent to noise sensitive areas and consider potential hydraulic / structure-borne noise transmission.
Where planning cannot be used to control hydraulic noise, cavity walls, structural isolation of fittings / pipe work, acoustic lagging or bulkheads and other appropriate measures should be provided to prevent unwanted noise intrusion.

As a general guide, audible intrusion from hydraulic services should be no greater than the satisfactory ‘design sound level’ set out in AS/NZS 2107 (refer to Table 3 summary list in this brief). This does not mean hydraulic noise will not be audible, but that it should not be considered excessively intrusive.

For critical spaces such as recording studios and performance venues, the hydraulic design and detailing should be such that noise intrusion is not audible. This is likely to require planning to locate hydraulic fittings and service / waste pipes well away from the noise sensitive space.

11.9 **Hearing Conversation**

Objective – to ensure that the design of the facility supports the intent of legislation related to protection of employee hearing.

The requirements of the "Occupational Safety and Health Regulations, 1996" shall be met in full. These Regulations relate to all aspects of employee health and safety. Regulations 3.45 to 3.47, specifically address Hearing Conversation aspects of the work environment. To comply with the intent of the regulations, major design issues to be considered include:

- Workplaces are to be designed to minimise noise exposure to occupants. Wherever possible, noisy machines and activities should be remote or isolated from other work areas. Noisy equipment should be acoustically enclosed wherever practicable.

- Consider the potential effects of reverberation, facility planning, and location of workstations relative to high noise plant, equipment and activity areas. Noisy work areas such as workshops must at least incorporate acoustically absorbent ceilings to assist in reducing the noise exposure of other people working nearby.

- Noise levels of new equipment should be considered as an integral part of equipment selection/purchasing procedures. A policy of selecting new plant and equipment on the basis of low noise operation should be considered.

11.10 **Acoustic Isolation**

Objectives

(a) to control unwanted room to room noise transfer from normal operational or activity noise (airborne noise transmission).

(b) to control unwanted noise intrusion from external / environmental noise sources.

The airborne sound insulation provided between various spaces and via the building elements shall be designed to ensure that the noise levels do not exceed the maximum "design sound levels" recommended in Australian Standard AS/NZS 2107 (refer to Table 3 in this brief).

The noise sources to be considered in terms of acoustic isolation include:

- Room to Room - internal noise sources from plant, services and activity noise

- Building Façade / Envelope - external environmental noise sources such as traffic, industry and externally located plant. (Intermittent noise from aircraft, rail and service bays should be considered separately).
Careful detailing of walls, windows, doors, floors and ceilings is required to ensure that the design performance of the construction is achieved and is not downgraded due to acoustic leakage or flanking transmission.

Room to Room “Airborne Sound Insulation”

As a guide, Table 2 sets out the required minimum airborne sound insulation values (Rw Design Ratings) between rooms. The design value typically appropriate for a particular scenario is determined by assessing the magnitude of activity noise in the ‘source room’ and the noise tolerance appropriate for the ‘receiving room’, as defined separately in Table 3 – “Room Classifications”.

Table 2 - Design Performance for “Airborne Sound Insulation” Between Rooms

<table>
<thead>
<tr>
<th>Minimum Rw Design Rating</th>
<th>Activity Noise in ‘Source Room’ (see Table 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Low, Average, High, Very High</td>
</tr>
<tr>
<td></td>
<td>Rw 35, Rw 40, Rw 50, Rw 60</td>
</tr>
<tr>
<td>Medium</td>
<td>Rw 40, Rw 45, Rw 55, Rw 60</td>
</tr>
<tr>
<td>Low</td>
<td>Rw 45, Rw 50, Rw 60</td>
</tr>
<tr>
<td>Very Low</td>
<td>Rw 50, Rw 55, Rw 60</td>
</tr>
</tbody>
</table>

Where design ratings greater than Rw55 are required it is advisable to separate the rooms using acoustic buffer spaces such as corridors or storerooms. Where this is not possible significant construction solutions will be required.

NOTES:

(a) Source to receiver assessments must be conducted in both directions, and the higher of the two design ratings applied.

(b) Deviation from the design level of up to 2 points may be acceptable where a wall construction is known to provide suitable performance in a similar existing facility. (E.g. a total of 3 layers 13mm fire rated plasterboard on 76 mm studs and insulation with \approx Rw 48 may be considered in lieu of Rw 50 between general purpose offices).

Table 3 – ‘Room Classifications’ to determine Airborne Sound Insulation

<table>
<thead>
<tr>
<th>Type of Occupancy or Activity</th>
<th>Activity Noise (Source Room)</th>
<th>Noise Tolerance (Receiving Room)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUCATIONAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Audio Visual Areas</td>
<td>Average</td>
<td>Low</td>
</tr>
<tr>
<td>Cafeterias</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Computer Rooms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>Average</td>
<td>Low</td>
</tr>
<tr>
<td>Laboratories</td>
<td>Average</td>
<td>Medium</td>
</tr>
<tr>
<td>Conference Rooms</td>
<td>Average</td>
<td>Very Low</td>
</tr>
<tr>
<td>Flexible Teaching Spaces</td>
<td>Average</td>
<td>Low</td>
</tr>
<tr>
<td>Interview / Student support</td>
<td>Low</td>
<td>Very Low</td>
</tr>
<tr>
<td>Space Type</td>
<td>Activity/Noise</td>
<td>Design Sound Level</td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Gallery Spaces</td>
<td>Low/Average</td>
<td>Medium</td>
</tr>
<tr>
<td>Gymnasiuims</td>
<td>High #1</td>
<td>Medium</td>
</tr>
<tr>
<td>Laboratoires</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>Average</td>
<td>Low</td>
</tr>
<tr>
<td>Working</td>
<td>Average</td>
<td>Medium</td>
</tr>
<tr>
<td>Seminar Rooms (up to 50 seats)</td>
<td>Average</td>
<td>Low</td>
</tr>
<tr>
<td>Lecture Theatres</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Without speech reinforcement</td>
<td>Average</td>
<td>Very Low</td>
</tr>
<tr>
<td>With speech reinforcement</td>
<td>High</td>
<td>Very Low</td>
</tr>
<tr>
<td>Libraries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Areas</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Reading Areas / Study Rooms</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Stack Areas</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Toilets</td>
<td>High #2</td>
<td>High</td>
</tr>
<tr>
<td>Video Conference</td>
<td>Average</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

MUSIC / PERFORMANCE

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Activity/Noise</th>
<th>Design Sound Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drama Studios</td>
<td>High #1</td>
<td>Low</td>
</tr>
<tr>
<td>Music Studio</td>
<td>Very High</td>
<td>Low</td>
</tr>
<tr>
<td>Dance Studio</td>
<td>Very High #1</td>
<td>Medium</td>
</tr>
<tr>
<td>Recording Studios #2</td>
<td>Very High</td>
<td>Very Low</td>
</tr>
<tr>
<td>Small Practice / Tutorial Room</td>
<td>Very High</td>
<td>Low</td>
</tr>
<tr>
<td>Ensemble Room</td>
<td>Very High</td>
<td>Very Low</td>
</tr>
<tr>
<td>Performance / Recital Space</td>
<td>Very High</td>
<td>Very Low</td>
</tr>
</tbody>
</table>

OFFICE ACCOMMODATION

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Activity/Noise</th>
<th>Design Sound Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board / Conference Rooms</td>
<td>Average</td>
<td>Very Low</td>
</tr>
<tr>
<td>General & Open Plan Offices</td>
<td>Average</td>
<td>Medium</td>
</tr>
<tr>
<td>Senior Private Offices (e.g. Head of Department)</td>
<td>Average</td>
<td>Very Low</td>
</tr>
<tr>
<td>Reception Areas</td>
<td>Average</td>
<td>Medium</td>
</tr>
<tr>
<td>Toilets</td>
<td>High #3</td>
<td>High</td>
</tr>
</tbody>
</table>

SERVICE AREAS

<table>
<thead>
<tr>
<th>Space Type</th>
<th>Activity/Noise</th>
<th>Design Sound Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Workshops</td>
<td>Very High</td>
<td>High</td>
</tr>
<tr>
<td>Plant Rooms</td>
<td>High #4</td>
<td>High</td>
</tr>
<tr>
<td>Undercover Carpark</td>
<td>High</td>
<td>High</td>
</tr>
</tbody>
</table>

NOTES

1. Control of potential impact noise sources requires special consideration.
2. Recording facilities require a project specific brief to be developed by the project Acoustic Consultant, depending on the standard of studio required.
3. Control of hydraulic services noise sources requires consideration.
4. Assessment of the expected reverberant sound pressure level within each plant room will be required in order to establish the extent of airborne acoustic insulation required to adjacent spaces (to achieve Design Sound Levels set out in Table 2).

Some adjustment to the Activity Noise or Noise Tolerance for various spaces may have to be considered on a project-by-project basis, depending on the nature of the facility.

For example:
- Interview and counselling rooms generally accommodate only low voice levels. However, in the case of mental health training facilities much higher voice levels should be expected - hence, higher acoustic isolation provided.
Specialist spaces such as ‘Speech Therapy’ rooms or those specifically for the hearing impaired should have ‘Noise Tolerance’ of Very Low.

Door and Internal Glazing

In designing to achieve appropriate airborne sound insulation between a corridor and adjacent space or interconnected spaces, due recognition must be given to the limiting performance of doors and vision glazing.

Doors

In planning the location of doorways, recognition must be given to the resultant unavoidable acoustic weakness. Wherever possible the distance between doors to neighbouring spaces should be maximised, rather than directly side by side. Similarly, doors along corridors should be offset, to avoid situations where one door is directly opposite another. Also, planning arrangements must be such that doors to spaces requiring ‘confidential’ speech privacy do not open directly onto waiting areas or to workstations in close proximity to the door.

Where doors are provided through acoustic rated walls, the following acoustic ratings should be provided for the construction elements.

Teaching to Teaching

Generally a Teaching-to-Teaching wall with interconnecting doors should be at least Rw 50. However, where a door makes up more than 1/4 of the dividing partition area, the wall rating can be reduced by 5 points below the design rating set out in Table 7A. The door must be solid core and incorporate effective fully adjustable acoustic seals, with a system design rating ≥ Rw 28.

Teaching to Corridor

Generally a Teaching-to-Corridor wall with access doors should be at least Rw 45. However, where a door makes up more than 1/4 of the dividing partition area, the wall rating can be reduced by 5 points below the design rating set out in Table 7A. The door must be solid core and incorporate fully adjustable acoustic seals, with a system design rating ≥ Rw 28.

Office to Corridor

General Purpose Office-to-Corridor walls with access door should be at least Rw 40. However, where a door makes up more than 1/3 of the dividing partition area, the wall rating can be reduced by 5 points below the design rating set out in Table 7A. The door must be solid core and incorporate fully adjustable acoustic seals, with a system design rating ≥ Rw 28.

Head of Staff / Interview to Corridor or Lobby

Spaces requiring confidential speech privacy such as Head of Department and Interview spaces require Rw 50 partition for walls accommodating the door. The door must be solid core and incorporate fully adjustable acoustic seals, with a system design rating ≥ Rw 30. Doors opening directly onto waiting area or to corridors with dedicated seating areas are not appropriate.

Spaces with Very High Activity Noise or Very Low Tolerance to Noise.

Planning must allow for incorporation of acoustic lobbies or corridors to act as acoustic buffers. For example:

- Lecture Theatres must incorporate acoustic lobbies with ≥ Rw 40 design performance. The wall accommodating the doors must be at least Rw 50.
- Spaces designed for music / performance should also be accessed via an acoustic lobby or acoustically isolated corridor. The wall accommodating the doors must be at least Rw 50.
- High noise level Plant Rooms may require ‘back-to-back’ doors or acoustic lobbies with \geq Rw 40 design performance where access is required from main corridor / circulation areas.

Internal Glazing

The requirement for visual access in not generally conducive to design for acoustic separation. However, it is recognised that where vision is provided through walls separating spaces, the expectation of acoustic separation is generally reduced and behaviour of building occupants is often modified to use lower voice levels etc.

Office to Corridor

It is relatively common for glazed partitions to be used for general purpose offices facing onto corridors and open plan work areas. However, where this is incorporated the overall airborne sound insulation of the construction will be limited to the order of Rw 30 to 35. This is because the design rating of 10 mm laminated glass is in the order of Rw 33. It follows that a high level of acoustic isolation cannot be achieved, and speech privacy is likely to be reduced, particularly where a potential receiver position is close to the glass.

Teaching to Corridor

It is common for high level glazing to be used along the upper level of walls separating Teaching Spaces from/to corridors. However, depending on the glass to wall ratio this may significantly reduce the design performance of the overall construction. Where high levels of airborne sound insulation are required, glazing may not be appropriate.

A case by case assessment of the likely ‘Activity Noise’ and ‘Noise Tolerance’ of the spaces may be required for specific scenarios - such as the suitability of fully glazed walls between Case Study to Breakout / Foyer type spaces. In some cases the requirement for view / visual connection may outweigh normal acoustic separation requirements.

Where it cannot be clearly determined that single glazing will provide adequate acoustic isolation to meet user expectations, the glazing system should be detailed in a manner that allows easy retro-fitting of a second pane of glass to form ‘acoustic’ double glazing. This requires at least 50 mm air gap between the layers of glass.

Flanking Transmission Paths

The two most common forms of flanking sound transmission that can compromise the acoustic separation of spaces are; 1) room-to-room transmission via the ceiling space and 2) flanking via door grilles.

Room to Room via Ceiling

Various approaches to controlling flanking sound transmission may be considered but must take into account; the Rw rating of the dividing wall, the Dncw rating of the ceiling system, and the extent of ceiling penetrations (including recessed light fittings) etc.

The acoustic insulation of the ceiling space must not compromise the design rating of the walls.

For spaces separated by higher performance walls (Rw \geq 50), the most effective method of controlling flanking sound transmission via the ceiling space is to carry perimeter walls up to
the underside of slab or roof over. (This design approach is then less dependent on selection of a barrier type ceiling system / detailing of penetrations).

Alternatively, provide loaded vinyl or other ceiling septum to work in conjunction with the acoustic barrier provided by the ceiling system. The overall level of acoustic insulation achieved by the combined ceiling and septum system must be comparable to the design rating of the wall.

For spaces separated by moderate performance walls (Rw 35 to 45), the selection of a ceiling system with appropriately high Dncw (CAC) rating, and incorporation of ceiling insulation over may be adequate (provided all ceiling penetrations are acoustically treated). The Acoustic Consultant is to advise on the likely acoustic insulation achieved by the ceiling system and any additional measures – specifically in relation to suitable control of flanking sound transmission.

Door Grilles

Mechanical System air transfer must not compromise the acoustic integrity of the wall, ceiling or septum systems – refer to Section 21 of this brief. Door grilles are a common cause of unwanted acoustic transfer.

Electrical Fittings

Recessed and vented light fittings in ceilings as well as back-to-back switches etc in walls can significantly downgrade the design rating of construction elements. Liaison with the Electrical Consultant will be required to resolve these potential acoustic weaknesses via planning or selection of appropriate fittings etc.

Junctions of Construction Elements

Wall to external glazing

Detailing of the connection between internal partition walls and the external walls / glazing is critical to maintain the required acoustic separation between spaces. The connection must not downgrade the performance of the dividing wall by allowing flanking sound transmission though acoustically weak materials / infill.

Where this detail is not adequately addressed it is common for a significant acoustic weakness to occur. Acoustic testing in various existing ECU facilities has identified this connection detail as a significant factor in reducing the potential acoustic insulation of dividing walls.

An appropriate connection detail should comprise 2 parallel strips of 6 mm glass joining the end of the partitions to i) the external glazing, ii) windowsill and iii) head over the window. The strips of glass must be separated by an air space of at least 50mm. Silicone should be used for the butt joints, or use combination of silicone and proprietary glazing channels. Alternatively use 1.6 mm steel either side of 40 mm fibre insulation. Lightweight hollow vertical mullions must be fully concealed within this detail, and must not form part of the dividing construction. All joints must be airtight. Acoustic leakage is very common at this detail unless carefully resolved. Even very small gaps will compromise the acoustic integrity of the detailing.

Wall to ceiling

The junction of a partition wall to underside of ceiling is critical. It must basically be ‘airtight’. This typically requires either; i) ‘top plate’ detailing that fits snugly between rebated tiles (aligned with the t-bar suspension grid), to the entire perimeter of each space, or ii) flush faced tiles incorporating acoustic compressible seal along a flush top track.
Alternatively, extend perimeter partition walls through the ceiling by at least 100 mm and fully seal the ceiling border to the perimeter walls.

Environmental Noise (Airborne Sound Insulation)

The existing acoustic environment at the proposed building site should be assessed at the earliest stages of the project, to determine relevant external design sound levels.

The building envelope including walls, windows, and roofing as well as ventilation systems must be designed to provide adequate airborne sound insulation to control noise intrusion from external noise sources including traffic, industry and externally located plant. Intrusion from normal external sources should not exceed the design sound levels set out in AS/NZS 2107 (refer to Table 3 in this brief).

11.11 Speech Privacy

Objective – to provide appropriate levels of ‘speech privacy’ to selected spaces, to support the required range of activities.

Specific levels of Speech Privacy are typically required for spaces within administration and student services facilities, where confidentiality of discussions is required. In particular, Head of Department Offices and Interview Rooms often accommodate discussions of a confidential nature.

The method for predicting speech privacy is to be as per AS2822 - 1985 ‘Acoustics - Methods of Assessing and Predicting Speech Privacy and Speech Intelligibility’.

The degree of speech privacy to be provided to various spaces is set out below:

Confidential Speech Privacy

Articulation Index (A.I.) not exceeding 0.05 for the specified voice level.

- Confidential Speech privacy should be provided to; Head of Department Offices, Interview and counselling rooms, and other rooms where strict privacy of conversations is integral to the use of the space.

Normal Speech Privacy

Articulation Index (A.I.) not exceeding 0.1 for the specified voice level.

- Normal Speech Privacy should be provided to; general private / cellular offices, staff studies, general-purpose conference and meeting rooms.

The design for speech privacy takes into account the following factors:

- Vocal Effort: i.e. - normal, raised, loud or shouting voice level,
- Privacy requirement: i.e. - normal or confidential privacy,
- Background noise level in the receiving space,
- Size of intervening partition,
- Size and acoustic absorption in the source room, and
- Size and acoustic absorption in the receiving room.
Table 4 - Definitions for Vocal Effort

<table>
<thead>
<tr>
<th>Vocal Effort</th>
<th>Sound level at 1 metre</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>60 dB(A)</td>
<td>Speaking in normal office</td>
</tr>
</tbody>
</table>
| Raised | 66 dB(A) | Speaking in Conference Room
 Interjecting in small office
 Loud voiced person |
| Loud | 72 dB(A) | Addressing a medium sized group
 Disagreement between persons |
| Shouting | 78 dB(A) | Distraught person |

Definitions for Confidential Privacy are:

Normal Speech Privacy is taken to mean that speech, although partly intelligible is not intrusive. It assumes a noise-to-speech ratio of 9 dB and corresponds to an Articulation Index of approximately 0.10.

Confidential Speech Privacy is taken to mean that speech will not be intelligible, except when a person concentrates on hearing. It assumes a noise-to-speech ratio of 15 dB and corresponds to an Articulation Index of approximately 0.05.

When designing to achieve a specified level of speech privacy, all relevant sound transmission paths must be considered. Also, background noise levels used for the calculation of speech privacy should be based on the 'satisfactory' level specified in Australian Standard AS/NZS 2107. Where background noise levels in existing buildings are available, these noise levels may be used. However, consideration must also be given to scenarios where lower ambient noise levels may occur and thus may not provide normal masking noise. (For example – at the far end of long duct runs or in naturally ventilated facilities)

The recommended construction shall satisfy both the Acoustic Isolation requirements and the Speech Privacy requirement.

11.12 Reverberation Control

Objective – to ensure general reverberation is adequately controlled to suit the required use of the space.

Specific levels of Speech Privacy are typically required for spaces within administration and student services facilities, where confidentiality of discussions is required. In particular, Head of Department Offices and Interview Rooms often accommodate discussions of a confidential nature.

The control of reverberation in spaces is normally carried out either for noise reduction within a room, or to create a specific acoustic environment. Reverberation Time (RT) within specified rooms shall not exceed the RT’s recommended in the Australian Standard AS/NZS 2107 "Acoustics - Recommended Design Sound Levels and Reverberation Times for Building Interiors".

Table 5 (below) summarises a range of relevant Reverberation Time design criteria, based on AS/NZS 2107. These design levels apply to the mid frequency RT’s including 500Hz, 1000Hz and 2000Hz. For spaces designed for clarity of speech, the lower frequencies may be up to
30% higher than the design RT. For larger volume spaces designed for music, the lower frequencies may be up to 50% higher than the design RT. This requires cases by case assessment.

Table 5 – Recommended Reverberation Times

<table>
<thead>
<tr>
<th>Type of Occupancy or Activity</th>
<th>Recommended ‘Reverberation Time’ (T), sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDUCATIONAL</td>
<td></td>
</tr>
<tr>
<td>Audio Visual Areas</td>
<td>0.6 to 0.8</td>
</tr>
<tr>
<td>Cafeterias</td>
<td>See Note #1</td>
</tr>
<tr>
<td>Computer Rooms</td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Laboratories</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Conference Rooms</td>
<td>0.6 to 0.7</td>
</tr>
<tr>
<td>Corridors and Lobbies</td>
<td>0.6 to 0.8</td>
</tr>
<tr>
<td>Flexible Teaching Spaces</td>
<td>0.5 to 0.6</td>
</tr>
<tr>
<td>Interview / counselling rooms</td>
<td>0.3 to 0.6</td>
</tr>
<tr>
<td>Gallery Spaces</td>
<td>See Note #1</td>
</tr>
<tr>
<td>Gymnasiums</td>
<td>See Note #2</td>
</tr>
<tr>
<td>Laboratories</td>
<td></td>
</tr>
<tr>
<td>Teaching</td>
<td>0.5 to 0.7</td>
</tr>
<tr>
<td>Working</td>
<td>0.6 to 0.8</td>
</tr>
<tr>
<td>Lecture / Seminar Rooms (up to 50 seats)</td>
<td>See Note #3</td>
</tr>
<tr>
<td>Lecture Theatres</td>
<td></td>
</tr>
<tr>
<td>Without speech reinforcement</td>
<td>See Note #3</td>
</tr>
<tr>
<td>With speech reinforcement</td>
<td>See Note #3</td>
</tr>
<tr>
<td>Libraries</td>
<td></td>
</tr>
<tr>
<td>General Areas</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Reading Areas</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Stack Areas</td>
<td>See Note #1</td>
</tr>
<tr>
<td>Toilets</td>
<td>NA</td>
</tr>
<tr>
<td>Video Conference</td>
<td>0.3 to 0.6</td>
</tr>
<tr>
<td>MUSIC / PERFORMANCE</td>
<td></td>
</tr>
<tr>
<td>Drama Studios</td>
<td>See Note #3</td>
</tr>
<tr>
<td>Music Studio</td>
<td>See Note #3</td>
</tr>
<tr>
<td>Dance Studio</td>
<td>See Note #3</td>
</tr>
<tr>
<td>Recording Studios</td>
<td>See Note #3</td>
</tr>
<tr>
<td>Small Practice / Tutorial Room</td>
<td>0.7 to 0.9</td>
</tr>
<tr>
<td>Ensemble Room</td>
<td>See Note #3</td>
</tr>
<tr>
<td>Performance / Recital Space</td>
<td>See Note #3</td>
</tr>
<tr>
<td>OFFICE ACCOMMODATION</td>
<td></td>
</tr>
<tr>
<td>Board / Conference Rooms</td>
<td>0.6 to 0.8</td>
</tr>
<tr>
<td>Corridors and Lobbies</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Open Plan Offices</td>
<td>0.4 to 0.6</td>
</tr>
<tr>
<td>Cellular / Private Offices</td>
<td>0.6 to 0.8</td>
</tr>
<tr>
<td>Reception Areas</td>
<td>See Note #1</td>
</tr>
<tr>
<td>Toilets</td>
<td>NA</td>
</tr>
<tr>
<td>Undercover Carpark</td>
<td>NA</td>
</tr>
</tbody>
</table>
NOTES

1 Maximise extent of acoustic absorption as far as is practical, to control general reverberation. Plantroom lining is recommended to control the reverberant sound levels in the space, to reduce both occupational noise exposure and breakout to adjacent areas.

2 The appropriate RT is volume dependent but can be 20 to 30% higher than Curve 1 of Appendix A in AS/NZS 2107

3 the appropriate RT is volume dependent - Refer to AS/NZS 2107.

11.13 Room Acoustics

Objective – to achieve room acoustic performance that supports the proposed use of the space, particularly with regards to clarity of speech communication.

Some spaces require specialist acoustic treatment in terms of Room Acoustic design. These rooms include:
- Lecture Theatres
- Large Conference / Seminar Rooms
- Performance Venues

The acoustic design issues that shall be separately considered include:
- acoustic isolation,
- Background noise.
- reverberation,
- speech intelligibility,
- sound reflection patterns

Generally spaces should be optimised for the projection of natural voice or un-amplified performance. However, where electro-acoustic systems are to be installed the acoustic environment must also take this into account.

A computer prediction model should be used to analyse relevant acoustic parameters such as Speech Transmission Index for relevant un-amplified presenter / source positions, and assess the space for potentially problematic reverberation characteristics or sound reflection patterns. This should be based on a three-dimensional model of the space, comprising surfaces with individually assigned absorption and scattering coefficients for each frequency band.

11.14 Vibration

Objective – to control transmission of vibration from plant and equipment to appropriate levels.

Dynamic elements of building services must incorporate suitable vibration isolation from the building structure to reduce transmitted vibration to below the “just perceptible” level as determined by the Reiher-Menistre scale of human perception of vibration.

The “just perceptible” level equates to 110 dB vibration velocity at any discrete frequency in the range 3 to 60 Hz.

<table>
<thead>
<tr>
<th>SERVICE AREAS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engineering Workshops</td>
<td>See Note #1</td>
</tr>
<tr>
<td>Plant Rooms</td>
<td>See Note #1</td>
</tr>
<tr>
<td>Undercover Carpark</td>
<td>NA</td>
</tr>
</tbody>
</table>
11.15 Construction Noise

Set out below is a basic Specification section regarding the control of construction noise on university projects. A more detailed case specific version may need to be developed for non-typical projects.

Control of Noise: Take practical precautions to minimise noise resulting from works within the Contract. Comply with guidelines as set out in AS 2436 - Guide to Noise Control on Construction Maintenance and Demolition Sites. In accordance with the Standard, the methods used to reduce noise emission from the site will include:

- **Substitution:** Where practicable quieter machinery or process are to be used;
- **Modification:** Engineered noise control is to be implemented on specific noisy items of equipment. This may include fitting of improved performance mufflers, screening of stationery noise sources, and other techniques as appropriate;
- **Siting of Equipment:** Locate high noise level equipment away from noise sensitive areas.
- **Maintenance:** Ensure equipment on site is appropriately maintained so as to emit minimum noise.

Environmental Noise: Noise emission from the site is to comply with the Environmental Protection (Noise) Regulations 1997 r 5, 7-9, 11-14A, 14, 15, 16, 16AA, 16BA, 17, 18, 18B, 19B; sched 2.

Noisy Equipment: The noise emission of all equipment on site must comply with Table D2 of AS 2436. The Superintendent may require the Contractor to provide a certificate of acoustic performance, produced by an approved Acoustic Consultant, indicating that the equipment meets the criteria as set out in Table D2, when tested in accordance with AS 2012.

Special Circumstances: On occasions for emergency reasons, the Superintendent may direct that all noise on the site ceases or be reduced. The Contractor shall direct his Sub contractors on site to meet this requirement.

Potential for this control measure will be highest during ‘exam periods’, where noise emission are found to be interfering with activity in adjacent facilities.

- The ‘exam periods’ relevant to this project are:
 (e.g. June xx to June xx 200_)

 ______________ to __________ 200_

 ______________ to __________ 200_

 ______________ to __________ 200_

 ______________ to __________ 200_

Noise Management Plan: The Contractor is to provide the University Project Manager with a construction program. In addition to this program, the Contractor is to advise both the Superintendent and University Project Manager of activities that are likely to result in high levels of noise emission to adjacent facilities, cross referenced to the construction program.

Of critical importance is the potential effect of noise during the stated ‘exam periods’. A Noise Management Plan should be provided by the Contractor to the Superintendent, detailing specific noise control measures to be implemented during these periods. Noise intrusion into designated exam venues should not exceed LAmx 35 dB(A) whist exams are in progress.
Where noise emission are found to be resulting in unreasonable disruption to university activities, the Superintendent or University Project Manager may instruct the contractor to cease all noise from construction for a set period of time.

12. Design for Universal Access

12.1 Introduction

Consultants are required to ensure that their designs pay particular attention to the following areas of design for access affecting people with disabilities:

- Circulation spaces must not be encroached by fixtures
- Constraints at doors, steps and turnstiles
- Grab rails (toilets, showers)
- Hand rails for ramps, passages and stairs
- Kerbs
- Landings
- Ramps (1:16 - 1:20), walkways (1:20)
- Ramp Gradients, Crossfalls
- Kick plates are required to base of critical use doors (main entries, corridors, toilets)
- Width of doors
- Lifts
- Stairways
- Toilet provisions (pans, basins, showers, mirrors, flushing button)
- Power outlets
- Carpark provisions

Where reference is made to a diagram it refers to that diagram in the relevant code.

Designers should remember that the term 'people with disabilities' is not restricted to wheelchair users. The term includes the following disability categories:

- Walking impairment
- Balance disorders
- vision impairment
- respiratory disorders
- hearing impairment
- restricted arm and hand grip impairment
- variable physical strength capabilities (fatigue problems)
- communication difficulties (signage).

Consultants should role play building access by people with disabilities to ensure facilities provide adequate access from site boundary to carpark; carpark to building entry; entry to upper levels; access through lobby systems and use of toilet facilities. Reverse this path to check exit problems.
The intention of this document is to assist in the design and documentation of projects and to ensure that user group feedback for improving access for people with disabilities is included.

It remains the responsibility of the designer to become fully acquainted with full code requirements and to ensure that the statements in this document are correct and current.

12.2 Generally
It should be noted that the standard is a set of minimum requirements, although ECU strives to incorporate best practice within the design process so that the building could be considered a leading example.

Designers must strive to achieve preferred requirements, but where this is not possible 'soft' answers between minimum and preferred may be acceptable subject to approval by the University Project Manager.

People with different degrees of disability may be using the building either independently or with an assistant. Consider both cases when checking designs.

The design for access and mobility standard- AS 1428.1-2009 is linked to the legal requirements of the Building Code of Australia.

12.3 Reference Documents
Note that separate individual codes exist for items related to access for persons with disability.

- AS 1172 - Water closet pans
- AS 1371 - Toilet seats and fittings
- AS1735-1999 - (Part 12) – Facilitates for persons with disabilities
- AS/NZS 2208 – Safety glazing materials in buildings
- AS 2700 - Colour standards for general purposes
- AS/ NZS 2890-2009 – (Part 6) Off- street parking for people with disabilities
- AS 2899 - Public information symbol signs
- National Construction Code Series, Building Code of Australia, Volume 1

12.4 Definitions
Shall : means mandatory
Should : means recommended
May : means optional

Circulation Space - unobstructed area, as designated to a minimum height of 2000mm and minimum width of 1200mm. These spaces shall not be encroached by fixtures.

Continuous Accessible Paths - check designs for continuous paths of travel (both ways) and eliminate constraints at doors, steps, turnstiles (see Introduction Notes).

Grabrails - check areas where a person may require steadying assistance (toilets and showers, for example).

Handrail - check areas where assistance can be given with the use of a handrail (ramps, passages, and stairs).

Kerb - side barrier to trafficable surface. Check access paths from carparks to entries.
Kerb Ramps - check locations, maximum length 1530mm, with grades 1:12 or better.

Landing - flat surface with gradient not steeper than 1:40 which acts as a resting place on a path of travel. (See detailed notes for landings).

Ramp - gradient 1:20 required with a maximum gradient permitted of 1.16 in extreme instances and only then after approval in writing by the Access Committee.

Step Ramp - (alternative to a step) Short ramp other than a kerb ramp. Maximum length 1530mm, gradient of 1:12 or better.

Walkway - maximum gradient 1:20.
Consider the use of walkways in lieu of ramps as these may be more effective and cheaper since handrails are not mandatory for walkways.

Consultants are to forward audit documents and a copy of the following checklist when Tender documents are completed.

12.5 Walkways, Ramps and Landings

Width

Unobstructed minimum width 1200mm *(1500mm preferred by University)* vertical clearance 2000mm.

As a guide, the following is to apply:

- Low volume traffic: 1200mm wide (suitable in field tests).
- Low/medium volume traffic: 1500mm wide (likely passing).

Walkways (determined by grade)

(a) Minimum gradient 1:20.

(b) Gradients 1:33 landings at 15 metres.
Gradients 1:20 landings at 9 metres.

- Landings for intermediate grades by interpolation.
- Grades shallower than 1:33 do not require landings.

Consider the use of layby areas at landings with a seat where ambulant people can sit and rest. Layby areas to be at maximum 50m apart.

Handrails should be installed in reasonably foreseeable risk areas.

(c) Gradient of walkways between landings to be constant.

(d) Where no handrail and kerb, or wall and handrail is provided the ground adjoining walkway is to extend horizontally for 1 metre each side of walkway.

(e) Space requirements for passing and turning circles in passages and walkways:
 - Passing spaces are required every 20m where direct line of sight is not available.
 - Turning spaces are required within 2m of the end of any passageway.
- Turning spaces are required every 20m in a continuous passage

Ramps

(a) The code maximum gradient of a ramp exceeding 1520mm long is **1:8 but this is not to be used.**

If *walkway grades* are not possible a ramp grade of 1:16 may be permitted if approved by the University Project Manager.

(b) Landings to be provided at 9 metres.

(c) Where ramps have changes of direction and do not have landings then approach angles and grades should be checked against code (AS1428.1-2009) Figure 4 diagram. Avoid these situations if possible.

(d) Gradient of ramps between landings to be constant.

(e) Ramps steeper than 1:20 grade and landings shall be provided with profiled handrails (as per 28.6.1 both sides)

 (i) Check design of handrails against AS 1428.1.

 (ii) If additional handrail required higher than 900mm then both are to be provided.

 (iii) Handrails should not encroach into any horizontal circulation space requirement - e.g. around doors.

(f) Ramps and landings shall be provided with kerbs both sides, where clear ground (min. 1 metre wide) is not available, and kerbs are to be either:

 (i) wall or rail kerb (preferred in order not to collect mud, leaves, etc.) with height not less than 65mm nor more than 75mm; or

 (ii) kerb rails preferred because they allow less chance for mud, leaves, slime, etc., to accumulate.

 (iii) achieve requirements of AS 1428.1, however, avoid kerbs in range 80mm to 145mm as footplates of wheel-chairs wedge on these kerbs and lift front wheels off the ground resulting in the user becoming stuck.

(g) Check kerb and handrail relationship against AS 1428.1, however, a **100mm maximum kerb/handrail horizontal distance differential is required.**

Angles of Approach for Walkways, Ramps and Landings

Where changes of direction and grade are made then design in accordance with AS 1428.1 and associated figures.

Use landings at these points.
Curved Ramps and Walkways
AS 1428.1 provides permissible gradient/radius requirements.

Landings, kerbs, handrails as for other ramps.

Crossfall not permitted. Code should be checked if curved ramps are to be used.

Camber and Crossfall in Ramps and Walkways
Cambers and cross falls are not allowed in internal ramps and walkways.

In outdoor conditions, walkways, ramps and landings must be designed so that water does not accumulate on surfaces. (1:40 cross fall permitted - Refer AS 1428.2.)

Abutment of Surfaces
(Where walkways or ramps meet surfaces with a different gradient precise change of gradient must be evident by a sharp line and colour change in paving. A rounded hump is not acceptable at change in gradient.

Use 600-800mm minimum wide tactile indicator strips on landings before ramp commences to aid people with vision impairment. Refer to AS 1428.1.

(NOTE: A person with a vision impairment may ‘over-step’ the 200mm wide tactile strip and in turn missing the intended warning of the ramp ahead)

Kerb Ramps and Step Ramps
(a) To be:

(i) as for AS 1428.1 code; and

1520mm maximum length

1330mm minimum (more preferred) access landing clearances from buildings.

1200mm minimum width.

(ii) Junction of surfaces at top and bottom of ramp to be as for ramp requirements notes.

(b) Two options are given in AS 1428.1 for the alignment of kerb ramps near roadways.

Preference for location type (a ‘90º road intersection’) because of:

- uniform crossfall (no camber, thus beneficial to visually impaired),
- safety right angled crossing of intersection (rather than oblique).

Landings
(a) Minimum length landing 1200mm

SUPP 1990 indicates a 1200mm long landing is adequate for low volume traffic.

Consideration should be given for wheelchair users and ambulant
persons to rest at landings. Provision of a seat and wheelchair parking area in an intermediate landing/layby area should also be considered (where total length of ramp exceeds 50m).

Where volumes will require resting or passing of either wheelchairs or ambulant persons then landings should be 2400mm long.

(b) Where landings are near doorways:
- check circulation requirements for access to doors (AS 1428.1, but increase "L" dimension by 100mm and "W" dimensions by 50mm);
- check intrusion of handrails into circulation spaces against code requirement.

Tactile Indicators
Design of walkways to take into consideration navigational cues for the vision impaired. Tactile ground surface indicators, together with other environmental information to be provided according to AS 1428.4-1992.

12.6 Handrails and Grabrails

Handrails
(a) Circular handrail to be 38mm diam.

270 Degree access to uppermost portion of handrail (Full circular cross section preferred).

(b) No sharp edges to handrail. Minimum 5mm radius.

(c) Minimum height of handrail is 865mm and the maximum height of handrail to be 900mm. (Refer to AS 1428.1).

(d) End of handrail to extend for a minimum of 300mm, turned down 100mm or be returned to end post or wall. (AS 1428.2).

(e) Minimum 50mm clearance from side wall. (Refer to AS 1428.1). Minimum 600mm clearance above handrail.

(f) Continuous hand grip required on handrail.

(g) Colour contrast to background.

Grabrails
(a) Outside diameter to be 38mm.

(b) No exposed edges.

(c) Fastenings to be capable of withstanding 1100N force applied in any direction with no deformation or loosening to result.

(d) Grabrail clearance from wall to be in range 50mm min. to 60mm max.

No obstructions to occur within 600mm above top of grabrail.
12.7 Doorways and Circulation Spaces

Generally
(a) The principle pedestrian entrance to a building is required to be accessible for people with disabilities.

At least 50% of all pedestrian entrances are to be accessible.

An accessible entrance must not be more than 50m away from the principle entrance.

(b) Signage at other public entries (not accessible by people with disabilities) to be provided to direct people to accessible entries.

Entrances also serve as emergency exits. Check that most entrances are suitable for entry and escape by people with disabilities.

(c) Where revolving doors or turnstiles are used alternative hinged or sliding door to be provided.

(d) Wheelchair footrests cause damage to the base of doors. Kick plate to be provided to accessible toilet doors and doors where significant wheelchair traffic is expected.

(e) Threshold ramps to have maximum rise of 35mm and length 280mm and a gradient not steeper than 1 in 8. Best if threshold can be eliminated.

(f) Provide automatic doors at the main entries of buildings.

(g) In libraries or buildings where shelving occurs, ensure there is a minimum 1200mm clear aisle space between shelving.

Clear Opening of Doorways
Minimum clear opening 850mm (Generally as for AS 1428.1).

(a) Swing Doors
Circulation spaces on both sides of each door are very important. Check against tables and diagrams AS 1428.1 but increase “L” dimension by 100mm and all “W” dimensions by 50mm.

Swing doors are preferred to sliding doors for acoustics, privacy and security.

(b) Sliding Doors
Refer to AS 1428.1 for circulation requirements each side of sliding doors

Circulation space on side opposite door face needs to be
increased by dimension 't' Refer to AS 1428.1

Door Frames
To be a contrasting colour to doors (70% contrast).

Distance between Doorways in Passages
Circulation access both ways through air locks and lobbies to be in accordance with AS 1428.1 which indicates distance as 1450mm (min.), however, this should be increased to 2000mm.

Door Glazing (Including Walls and Sidelights)
Check if hazardous situations exist where an ambulant or wheelchair user would need to be aware of a person or situation on the opposite side of the door.

Refer to AS 1428.1 for minimum glazing requirement.

Lower edge of glazing in doors to be not less than 300mm and not more than 1000mm above floor level. Upper edge of glazing to be NOT less than 1600mm above floor level. Edge of glazing to be 200mm from latch edge of door and width of glazing to be not less than 150mm wide (Refer AS 1428.2).

Frameless and Fully Glazed Doors shall be marked at a height of 900mm above floor level to provide protection against people walking into glass.

12.8 **Lifts**
See Code AS 1735.12
- Lifts to have audio, visual and tactile information. Ensure lift door closing speed complies with code. Ensure gap at floor between lift car and floor threshold complies with code.
- Full commercial sized lifts are acceptable as accessible lifts.
- Lifts that travel more than 12m need a minimum area of 1600mmx1400mm.
- Accessible controls.

12.9 **Stairways**
Generally
(a) To be in accordance with Building Code of Australia.
(b) Top or bottom step of a flight of steps shall not encroach into horizontal circulation space for people with disabilities - e.g. at doorways.
(c) Stairs should not have open risers.
(d) Spiral stairs are not permitted.
(e) Nosing of steps to have warning strips that are a contrasting colour to the material (50mm wide on tread and 25-50mm wide on riser).
(f) Stair treads to be 275 - 300mm effective width and risers to be 150mm to 165mm high (25mm maximum slope on riser is not included in effective width of tread).

(g) The floor surface of stairs to be a stable, slip resistant material.

Handrails

Handrails on both sides of stair to be in accordance with section 12.6 of this report.

(a) Heights and projections of handrail at landings to conform with AS 1428.2.

(b) Handrails to be continuous around landings.

(c) Where handrail terminates at top and bottom of stair it should extend:
 - 300mm past riser at top of stair.
 - 300mm plus one tread width from the riser at bottom step.
 Provide tactile indicator domed button 150mm from end of handrail.

(d) Handrails must not encroach into circulation spaces nominated in code (i.e. landings and circulation spaces at doorways).

12.10 Sanitary Facilities

Water Closets

(a) Hand basin to be included with each water closet. Unisex toilets preferred but should not transverse areas reserved for one sex only.

Special closet pans are required (i.e. ‘Caroma Leda 2000 Smart Flush). Seat height to be not less than 460mm. Unisex toilets pans should be Caroma Cosmo Sovereign care site smart flush.

(b) Recessed or surface mounted cistern are both acceptable. Surface mounted cistern to be located as for AS 1428.2. Larger cistern button required (50mm diam).

(d) Full round securely fixed seat without flap is required. Toilet seats should be heavy construction and flat, securely hinged to prevent sideways movement. Firm support is required when transferring from wheelchairs. Seats must have metal fixing. Caroma Pressalit 2000 is an acceptable type of seat.

(e) Flushing control to be a large button located 900mm above floor, on rear wall in an area starting 450 from room corner and extending out 500mm maximum.

(f) Location of toilet paper double roll controlled delivery dispenser (Refer to AS 1428.1 & 1428.2). Bobrick B274 or similar approved to be used.

(g) Grabrails to be provided at rear and next to pan - refer to AS 1428.2.

Construction and fixing of grabrails to be as for AS 1428.2.
Material to be stainless steel.

(h) Pan circulation space - refer to AS 1428.2. Code requires space 2300mm long x 1900mm wide.

(i) Circulation space both sides of door in airlocks must comply with AS 1428.1.

(j) If sliding door used then circulation provisions to door handle access requirements increased by depth of wall plus gap to face of sliding door. Refer to AS 1428.1.

(k) Doors to water closets.

(i) Pivot or sliding doors acceptable (pivot doors preferred)

(ii) On projects exceeding 5,000m² accessible toilet on main level to be fitted with automatic sliding door.

(iii) Emergency provision for latch release and removal of door in an emergency.

(iv) Vacant/engaged indicator bolt with large turn knob located 900mm above floor.

(v) If door closer used see Clause 12.11. 1-rising butt hinges preferred.

(vi) “D” handles preferred. Latch backset to be in range 35mm to 45mm.

(vii) Outward opening doors to have a hinge mechanism to hold door in closed position without the use of latch - AS 1428.2

(l) Provide emergency call button to comply with AS 2999 (linked to an attended service centre).

Hand Basins

(a) Basin or trough and fixtures to be in accordance with dimensional ranges shown in AS 1428.1. Lever handles [see Clause 24 Table 7].

(b) Waste pipes shall not encroach into knee space. Refer to AS 1428.1. Hot water to be delivered through a thermostatic mixing valve.

(c) Circulation space for wash basin to be as for AS 1428.2.

Washroom Fixtures and Fittings

(a) Full height mirror required in the range 900mm above floor level to 1850mm above floor level and min. 350mm wide.
(b) Provide one shelf 500mm long and 120mm-150mm wide at nominal height 900mm above floor.

(c) Soap dispensers and paper towel dispensers to be installed at 900mm above floor.

(d) Provide an electric hand dryer in each toilet at 900mm above floor).

(e) Provide clothes hooks - Height range 900mm to 1100mm above floor level. Not less than 500mm from any internal corner.

(f) Allow for sanitary napkin disposal bins in all WC cubicles (restrained in brackets).

(g) Switches and general purpose power outlets (refer Clause 31.7).

Shower

(a) Size 2350mm x 1600mm circulation space to Figure 13 and 14 of AS 1428.2.

Shower recess to be 1160mm x 1100mm.

Folding seat required one end open - in shower recess.

Shower seat to fold down, have a non-slip surface, self draining, rounded edges.

For fittings and general space requirements check against AS 1428.2.

Taps to conform to Code requirements and be:

lever type

have temperature controlled water

tap clearances from any obstruction to be a min. 50mm.

to be 900mm above floor.

Two clothes hooks to be provided within 600mm of shower seat.

A bench or seat outside shower area is also required for clothes to be accommodated.

(b) Weighted easy sliding shower curtain preferred to hinge doors.

If doors used refer to Part 15.5.3 of AS1428.1-2009. Conditions (a), (b) and (c) of the Code.

No columns or support structure to encroach into circulation space.

(c) Grab rails to be fixed in shower all to Figure 13 and 14 of AS 1428.2.

Size and fixings refer to AS 1428.1.

(d) Flexible shower hose and head to be installed on a shower head support grab rail.

(e) Soap holder required in zone (Refer to AS 1428.2).
Holder to be projecting type also acts as handgrip and should be capable of withstanding 1100N without failure.

(f) Floor and Waste Outlet
 Floor to be self draining
 No kerbs or stepdowns
 Fall floor away from shower seat
 Floor outlet to be located in centre of shower recess.

Combined Sanitary Facilities
Refer AS1428 for illustrations of overlap provisions for circulation spaces.
Vertical dimensions for circulation space is 2000mm above floor.
Fixture spaces are different from circulation spaces. Fixture spaces are NOT permitted to encroach into circulation spaces except where:

(a) A hand basin is near a doorway having a swinging door.
 300mm ARC clearance provision. (Refer to AS 1428.1)

(b) A hand basin is near a sliding door. 1100mm Cleanway is required
 (Refer to AS 1428.1)

Drinking Outlet
One drinking outlet (refrigerated or not) is to be provided per floor to AS1428.2 in order to accommodate persons in a wheelchair. Refer unit installed in Building 23 Joondalup Campus as an acceptable standard.

12.11 Controls

Door Handles and Hardware
(a) Handles shall allow door to be unlocked with one hand.
 Ambulant people need other hand to support mobility aid.
 Lever handle preferred to knobs.
 Hand should not slip from handle.
 Knobs on bolts and snibs should not slip from hand (Recessed door pulls bad example).
 Use 'D' pulls on sliding doors and toilet swing doors.

(b) Backset to handles to be in range 35mm to 45mm.

(c) Use rising butt hinges on toilet entry doors.

(d) Door Closers
 Access for persons with disabilities is to be carefully considered when the use of door closers is contemplated. Where possible, alternate solutions are to be provided.
 If used, Code requirements for opening force is to be met. Cam action closers are to be considered before rack and pinion closers.

(e) Location of door lock/opening controls.
 (i) Turn type to be located 900mm above floor.
(ii) Touch type 900mm above floor and not less than 500mm from internal corner.

(iii) Bottom of 'D' handle to be no higher than 900mm above floor.

(iv) 'D' handles are to be used on sliding doors and to be not less than 60mm from door jamb.

Switches, General Power Outlets and Telephones

To be installed 900mm above floor, not less than 500mm from internal corner (refer to AS 1428.1), and horizontally aligned with door handles. Security and taxi telephones to be installed 900mm from floor to u/s of phone.

Water Taps

Water taps to be operable by people with disabilities.

12.12 Signs

Statutory signage for accessible facilities shall comply with the Code (Refer to AS 1428.1 and Clause and Specification D3.6 of the Building Code of Australia)

12.13 Hearing Augmentation

Where a sound amplification system is provided, a listening system to aid hearing impaired people shall be installed or made available and shall cover at least 25% of the total area of the enclosed space. Provide suitable signs to indicate the availability of the system.

Refer to AS 1428.2.

12.14 Floor Surfaces

Floor surfaces in wet and dry locations shall comply with the requirements of AS 1428.1.

12.15 Carparking

(a) Refer Code AS 2890.6.

(b) Provide directional signage for people with disabilities from point of boundary entry to parking bays.

(c) Locate parking bays in close proximity to major campus pedestrian entries.

(d) Check that the gradients of parking bays comply with codes and are preferably to be at the same level as the entry to be used.

(e) Parking standards are 2.4m wide x 5.4m long dedicated (non-shared) space accompanied by a shared area on one side of the dedicated space measuring also 2.4m wide by 5.4m long.

(f) Parking bays and associated share zone are to be marked with international symbols and signage as per AS2890.6
(g) Where road crossings are necessary ensure that people with disabilities can cross directly to safe paths via kerb ramps. Wheelchairs using roadways as access (other than direct crossing) should be avoided. Access to kerb ramps must be kept clear of parked vehicles.

(h) Check that speed humps do not occur in paths of wheelchair users who may by necessity have to use general car parking areas.

(i) It is not uncommon for wheelchair users to be set down near entries whilst an assistant parks a vehicle in a general car park and returns to be with the disabled person.

- Allow for safe short term set down parking.
- Allow for people with disabilities to be easily located under cover and preferably where pedestrian traffic is passing.

(j) Vertical clearance height at vehicle entry to parking bays to be 2500mm and internally within covered area at 2800mm.

(k) Ensure adequate lighting is available at accessible parking areas. (Minimum 20 Lux at car bay). Refer AS 1428.2.

12.16 Public Counters
Public and Reception counters used by staff and customers are to be planned and designed to enable full access and use by people with disabilities.

12.17 Student Accommodation Requirements and Student facilities
Storage
To be in accordance with AS1428.2 Clause 24.2.

Minimum clear floor space of 800mm x 1300mm providing either forward or parallel approach by a person in a wheelchair.

For forward reach unit wheelchair user storage to be at an accessible height within 380mm - 1120mm above floor (300mm wide shelf).

For forward reach wheelchair user over obstructions max. bench width to be 550mm.

For forward reach wheelchair user who are reaching over obstructions the max. bench width to be 550mm as indicated in AS1428.2.

For side reach wheelchair users shelves to be located in range 230mm - 1350mm above floor and shelving to be 300mm wide.

To accommodate both ambulant and side reach wheelchair users, the
common reach zone is 700mm - 1200mm above floor for 400mm wide shelves.

Ambulant reach zone is 500 - 1670mm above floor for shelves 400mm deep.

Corners of benches to be rounded.

Drawers or slide out wire baskets preferred to large open cupboards.

Cupboard/drawer handles to be “D” handles and to be contrasting colour to cupboards.

Worktops/Counters

To be at constant height.

Bench surface material to be heat resistant especially near cook top.

Work tops to be 30% lighter in colour than vertical surfaces.

Height of benches to be 850mm with clear height under of 820mm for distance of 1500mm to one section of bench (depth of this bench to be 550mm).

Sink

Sinks to be double bowl with maximum bowl depth to be 150mm.

Underside of sink bowl and exposed pipes to be insulated to avoid burns.

Clearances under sinks to be as shown in AS1428.2-1992.

Height to top of sink to be 850mm.

Student Facilities

Student facilities including end of trip facilities, kitchen facilities (for staff also) and dining, café areas are to be planned and designed to enable full access and use by people with disabilities in accordance with AS1428.1-2009 and Building Code of Australia.

Specialist Facilities

13. **Cleaner’s Store**

At least one cleaner's store (minimum 6m²) per floor is to be provided in a building and is to contain:

- Cleaner’s sink with hot and cold water (outlet to be single non-threaded type).
- A hanging rack for brooms, buckets and mops consisting of double pegs (to suit 6 items) on a back board.
- Floor drain at cleaner’s sink ensuring this is located at the lowest point in floor.
- Provide 1.8m x 0.45m wide timber shelving with first shelf located 1.2m above floor level and second shelf 0.45m above first shelf (vacuum cleaners to be stored under shelving).
The room is to be a dedicated room for cleaners and not to be cluttered with pipes and cisterns that are associated with adjacent toilet areas.

Room is to be exhaust vented (operated by light switch control) with exhaust grille located above sink.

Preferred room dimensions are 2m x 3m.

13.2 Rest Room
A rest room is to be provided in accordance with Shops and Factories Act provisions.

13.3 Toilets
Student toilets, unisex toilet for people with disabilities (refer Section 5.10) and separate staff toilets are to be provided in each building in accordance with the BCA and shall be based on the expected population and gender mix of the building.

Toilets to be low maintenance areas complete with mirrors (in frames), soap dispensers (provided by ECU contractor), are to be installed over basins in order that any drips fall into basin full height glazed ceramic wall tiles, terrazzo partitions, a Mitsubishi Jet Towel electric hand dryer (two dryers provided where fixture count exceeds 3), coat hook/rubber buffer (to door of cubicles). The male urinals are to be waterless to be sourced from the ECU supplier - Urimat Australia.

All female toilet cubicles to have a clear space of 250mm on one side of toilet pan (seat clearance) to accommodate a 655mm high x 320mm deep x 215mm wide sanitary napkin disposal unit.

A shelf or vanity bench is to be provided in all toilet basin areas.

Toilet paper holders to be Hygenex Jumbo Reserve (17.01.02) from Experro plastic dispenser (provided by ECU for installation by Contractor) except to toilets for people with disabilities where Bobrick B274 or similar controlled delivery dispensers are to be installed.

Provide GPO adjacent mirror.

Coat hooks/buffers to be provided to each cubicle door and to prevent doors opening and damaging cubicle partitions.

Toilet cisterns to be Caroma in duct cisterns.

13.4 Shower Facilities
Provide in each building where nominated a male and female shower facility together with bench seats, cubicle doors, hot and cold water, recessed soap holder, hooks (2), mirrors, shelves etc. Adequate space should be allowed for lockers. All showers are to be in cubicles with doors.

Provide graded floor in change room areas and matting in shower access area.

Provide area for staff to store clean clothes and change areas in situations where they are normally required to change clothes.
13.5 Courtyards and Indoor Planters

Temperature
Increase the canopy cover of plants in open areas to reduce hotspots. Refer to the landscape Guidelines for plant species and also refer to the Climate section under 3.5 and 3.6 relating to temperature and the impacts of increasing temperatures.

Light
Indoor or undercover plants must receive a minimum of 2000 lux of indirect natural light.

Water
One hose cock (20mm) with backflow preventer is to be installed to serve each courtyard, internal garden, balcony type planter box.

Drainage
Minimum of one 50mm diameter drain is required to service a surface area of 10 m² of internal garden or planter box. Each drain should be provided with a silt trap. All drains should have maximum fall to prevent silting and should have flushing connections.

Soil Depth
Minimum depth of 500m for plants to height of 1 metre. Maximum of 1 metre depth for plants of greater height.

Water Proofing
All planter boxes above ground shall be fully tanked internally.

13.6 Service and Storage Areas
Particular care is to be taken in the design of these areas to provide convenient access to Industrial Waste Bins and other rubbish containers while at the same time providing suitable visual screening. Adequate provision is to be made for the secure and ventilated storage of gas bottles where required.

13.7 Entrances
At least one entrance (as close as possible to parking area) to each building must have ramp access (for people with disabilities) with level landing outside entry doors.

Doors to be automatic opening, preferably sliding. Internal entry doors to accommodation leading off main foyers to be automatic. Refer Services, Electrical Section for specification of auto doors.

External stairs to all entrances must have "going" and "rise" in accordance with BCA but the tread must be no less than 300mm.

Use 38mm OD pipe handrail for both stairs and ramps with standard bends to be 100mm radius. Ensure brackets and balusters supporting handrails conform to requirements for persons with disabilities.

Provide adequate roof overhang or some form of external physical protection to entries.

At entry door install wall to wall indoor matting extending at least 1200mm into corridor.

Floor materials shall be non-slip low maintenance and require minimum cleaning.
Number each floor level starting from the basement as level 0 and ground being Level 1. Room number sequencing to be arranged clockwise from main entry with each number running in sequence down one side of the corridor and up the other. Refer Section 18 for detailed signage requirements.

13.8 **Loading Docks**

All loading docks are to have edges protected by a handrail (hinged where loading is carried out) to prevent people falling off the edge and provided with vehicle protection buffers to edge of loading docks.

Provide protective edging to ramps to prevent damage by vehicles.

Paving edge to be coloured differently to that of adjoining paving (to accommodate people with impaired vision).

13.9 **Carparking**

Car bays are to be:

- Minimum 2.5m wide x 5.5m long.
- Access drives to be 6m wide (2 way access drives)
- All end bays to be not less than 2.75m wide.
- Aisle bays to be not less than 3.0m wide x 6.7m long.
- Carpark pavement to be marked with messages and arrows in accordance with AS1742, Part 1-2014 (as amended).
- A car bay shall be marked along its length by unbroken lines not less than 75mm wide.
- Carpark lighting is to be kept 1.5m clear of canopy of existing fully developed trees and expected fully developed canopy of new or proposed trees.
- Carparking for persons with disabilities is to conform to AS2890.1 and amendments thereto.
- Footpaths running parallel to and against carpark kerbs are to be wide enough to suit the pedestrian traffic anticipated together with an additional 1000mm width of paving to accommodate over hanging parked vehicles. This 1000mm width of paving should preferably be of a different colour to the main path in order to signify that this is a different zone and not intended for pedestrian use.

13.10 **Staff Lounges and Tea Rooms**

All staff to be provided with tea room/breakout facilities in close proximity to workspace. Generally one per floor or business unit. Scale and type of services will be dependent on number of people served.

13.11 **Waste and Recycling**

External Areas – Waste Bin Stations
- 120L/240L stainless steel enclosure for yellow top sulo bin for comingled waste.
- 120L/240L stainless steel enclosure red top sulo bin for general waste

Kitchen/Level
- Yellow top Recycling Bin – with standardised ECU signage clearly stating what goes in the bin.
- Up to 20 person's maximum requires a 50L General waste Bin (under bench) – with standardised signage clearly stating what goes in the bin, in line with the waste principles/guideline for receptacles.
- Greater than 20 person using the kitchen, requires at least 100L waste stations to be designed into the area, in line with the waste principles/guideline for receptacles.

Photocopying Areas
- 120L Blue Sulo Paper Recycling Bins and a 120L confidential blue paper bin should this be required.

Green Rooms
- A small dedicated room (4mx4m) or space dedicated to recycling of specialised items and environmental education that is clearly marked with a visual sign.
- Located in a centralised area.
- Provides a dedicated space for recycling of batteries, mobile phones, toner and printer cartridges.

13.12 **Multi Access Room**
Projects over 5,000m² are to be provided with a multi access room. Room to be provided with a baby change facility and a separate space with comfortable informal seating including power and data services. Door to room to be access controlled.

13.13 **Laboratories**
Specific design requirements will be required where laboratories are to be included.

13.14 **End of Trip Facilities**
To provide adequate end of trip facilities in the way of showers, lockers and short and long term bike parking for the occupants of the building.

- Provision must be made for adequate change rooms to include separate male and female showers and lockers of adequate size (i.e. so clothes can be hung inside).
- Provision must be made for long term secure parking in the way of a bike enclosure or compound that can be locked.
- All compounds of End of Trip Facilities (i.e. showers, lockers, and bike parking) need to be located in close proximity to one another in secure areas.
Building Fabric

14. **General**

Design of building fabric and selection of materials to satisfy the following criteria:

- Fitness of purpose.
- Flexibility.
- Robustness.
- Life cycle cost.
- Fits ECU sustainability objectives.
- Thermal Performance.
- Room Data Sheets.

15. **External Fabric**

15.1 **Structure - Constructability**

Buildings with poured in situ concrete external walls shall be designed with particular care and consideration given to the possible future effects of shrinkage and cracking which may lead to corrosion of reinforcement and eventual spalling of concrete. Any such designs will be critically examined and structural guarantees will be required.

Provide adequate control joints in all masonry walls. Joints to be thoroughly sealed to prevent water entry.

Ensure damp proof course (DPC) are provided to cavity masonry at floors and flashings to heads/sides of openings. Ensure drainage through weepholes at all damp proof course (DPC) DPC flashings.

Ensure cavities and ties are clean at completion of construction.

Provide vertical flashings between columns in cavities and the external masonry leaf.

15.2 **Roofing**

- Design of roofs to satisfy essential requirement to keep out the weather, and effectively drain away stormwater. Complex roof forms which result in risk of leakage are to be avoided.
- Membrane roofing/tanking, etc. not to be used without prior approval.
- Gutter design. Internal gutters or box gutters are not to be used without prior approval. Gutters must relive to the outside.

15.3 **Wall Lining**

- Limit use of materials to those which do not require periodic maintenance.
- Use of painted finishes to external elements is discouraged and is not to be used without prior approval.
- Any lightweight materials which are susceptible to mechanical damage shall not be used within 3 metres of ground level.
- Design for thermal buffering/Insulation.
All wall finishes to be sealed with non-sacrificial type anti-graffiti coating to a height accessible from ground level (2.5m). Care to be taken in the “designing in” of the boundary of coating. External walls shall be either concrete or concrete masonry.

15.4 External Soffit Lining
- Limit use of materials which require periodic maintenance.
- Screw fixings which embed into the material (fibre cement) being fixed to be avoided where depth of embedment cannot be reliably controlled.
- Design of support structure and fixings for soffit lining will require input from a Structural Engineer.

15.5 External Windows and Doors
- Design and location of windows is to provide natural lighting and outlook while at the same time not introduce glare and thermal load to the interior. Openings exposed to full sun are to be avoided particularly on the East and West elevations.
- Allow for adequate access for cleaning of windows either from elevated work platforms or permanent gangways. Where access to these gangways is from the inside, doors shall be keyed to the University service master key system.
- All external windows shall be designed in accordance with all relevant codes,
- Are to be located in common or open plan spaces and not within single offices.
- Refer Electrical Services and Security Services for the provision of automatic doors and the securing of the external perimeter

15.6 Sunscreen and External Attachments
- Any external attachment to a building is to be designed by a Structural Engineer.
- In general the durability of any attachment must match that of the external fabric. Any elements which require applied coating for durability must be designed to be able to be maintained.

15.7 Access for Periodic Maintenance
- Any element of the external fabric of a building which requires periodic access for maintenance is to be provided with safe access. Elements include windows, gutters, roofs, equipment, light fittings etc. Demonstrate design strategies to achieve this end.
- The window system should be designed to ensure external face of glazing is capable of being cleaned wholly from within the building without infringing the requirements of regulatory authorities. Where this is not possible, provide approved external walkways complete with fall arrester system.
- Eyebolt systems safety hooks for cleaning windows may be required where the window opening is large enough to allow a person to accidentally fall out. This is to be determined in consultation with the Facilities and Services Department.
- Allow a minimum 800mm wide access way free of planting to outside of windows at ground level for use by window cleaners.
- Glass must be easily removed and replaced after breakage. All window types must cater for this requirement and be designed and installed accordingly.
- All metal finishes shall be anodised aluminium for low maintenance purposes. Colour shall be approved by the University Project Manager.
16. **Internal Walls, Partitions and Finishes**

16.1 **Flexibility**
Buildings shall be designed for total flexibility internally with respect to useable floor areas. Load bearing walls shall be minimised and restricted to areas such as the building exterior, core for stairwells, lift shaft and toilets. All other internal walls and partitions shall be non-load bearing and preferably fully demountable within the limits of economical design. To ensure building flexibility framed construction is preferred to load bearing masonry for buildings other than for domestic type of use.

16.2 **Materials (including skirtings)**
Partitions and internal walls may be of plasterboard on metal stud, concrete masonry, or equivalent as required by the application. Finish must be low maintenance and easily cleanable.

Protection of external corners, where appropriate, to be considered. Skirtings are essential to prevent damage to base of walls from cleaning equipment. Where damage from furniture is considered a high risk, use of chair rails and the like to be considered.

Long runs of unrelieved wall finishes in corridors are to be avoided to minimise the unsightliness of inevitable wear and tear.

Masonry walls to have required control joints which coincide with floor expansion joints.

17. **Floor and Floor Finishes**

17.1 **Design**
Floor slabs shall be designed for the most economical construction and flexibility of use with due consideration to long term deflections and the need to provide for penetrations both initially and during the course of the building's life. The need to core holes up to 200mm diameter or to provide penetrations up to 1200mm square in selected areas at a later date should be taken into account during design.

17.2 **Floor Loads**
All buildings shall be designed for floor loadings generally in accordance with those specified by AS1170.

Library stack areas shall be designed to suit compactus loading. Floor loads for special areas shall be determined in consultation with users.

Provision shall be made for the installation of compactus shelving in all general office areas and in other areas specifically nominated in the brief.

17.3 **Termite Control**
Anti-termite treatment shall be provided to all buildings either at the beginning or after completion of the contract. All workmanship and materials shall conform to the requirements of AS2057A-1986 and subsequent amendments for soil treatment for the protection of buildings against subterranean termites. All necessary safety precautions shall be taken to protect workmen and others from poisoning.
17.4 **Floor Mats**

Nomad mats (minimum 1200mm deep) shall be provided internally in mat recesses at each external access to the building. Mat recesses shall be formed by brass angle set into the concrete. Mat recesses for fire isolated areas shall be external and shall be adequately drained if exposed to weather. Where installed in carpet areas mat recesses within carpet depth may be provided.

17.5 **Floor Finishes**

Floor materials shall be low maintenance and require minimum cleaning. All flooring material will be non-slip with special care being taken in material selection for wet areas.

All proposed floor finishes must be approved by the University Project Manager.

Carpet

Commercial grade carpet tiles with anti-static properties are to be used where a carpet finish is briefed.

Standardisation of type, pattern and colour is advantageous for future renovation and addition.

Vinyl

Choice of vinyl floor finish to suit the particular application. In general finish to be non-slip and easily cleaned. Marmoleum is an acceptable finish in administrative areas. In chemical laboratory areas finish to be chemical resistant with fully welded joints. In computer labs or areas with high density of electronic equipment finish to be antistatic.

Standardisation of type, pattern and colour is advantageous for future renovation and addition.

Ceramic Tiles

Ceramic tiles shall be used on walls and floors (non-slip) to all toilet areas/showers including air-locks and to floors in fire-rated passageways/stairs. Wall tiles shall be glazed or semi glazed of 200 x 100 module with matching grout colour. Tiles to stair treads shall be unglazed, non-slip to suit the application with tread nosing tile (of contrasting colour to other tiles) and matching grout. Appropriate expansion joints shall be provided.

Where floor tiles are used in areas susceptible to drink/fats/grease type soiling, then tiles are to be 100% non-porous, non-slip and easy to clean.

Concrete Finish

Exposed concrete floor finishes shall be sealed for dust and cracking.

Floor Penetrations

All floor penetrations shall be sealed and comply with fire stopping requirements.

Floor wastes shall be provided within all wet areas and adequate falls in the floor to these outlets are to be provided. No ponding in wet areas will be permitted.

Colour

Colour of all floor finishes shall form part of the overall colour scheme for the building and shall be selected in consultation with the University Project Manager. Those finishes that soil easily are generally to be a dark colour.
18. **Ceilings and Ceiling Finishes**

Choice of ceiling type and finish to suit the particular application.

In general ceilings are to have acoustic properties and provide easy access for services contained within ceiling spaces. Where accessibility is a requirement it is essential that ceiling panels can be removed and replaced without damage to the panels.

Where fire isolation or acoustic isolation is a requirement painted flush plasterboard is acceptable. Where access to ceiling voids is required when using this type of surface, proprietary manholes which do not compromise fire and or acoustic properties of the ceiling are to be used.

19. **Furniture, Fixtures and Equipment**

19.1 **Built-in Furniture**

All built in furniture, cupboards and laboratory benches shall be supplied as part of the Contract. Details shall be determined in conjunction with the University.

Supply samples of the following with the finishes colour board:

- Ceramic wall/floor tiles
- Laminates and veneers
- Glass
- Epoxy finishes and Polyester Powder coating on steel frames
- Bench top finishes
- Carpet
- Vinyl

Special finishes which are difficult to replace or require long lead times to procure shall be avoided.

Tops to built-in shelving to finish 500mm away from light fittings in order to comply with the University's Fire Insurance requirements.

19.2 **Fitout**

The implementation of loose furniture fit out is the responsibility of the designer. University standard furniture fit out details will be supplied to the designer as a guide.

Selection and design of loose furniture is to address:

- Serviceability. Robust design
- Consistency. Ability to be relocated without looking out of place.
- Flexibility. Ability to be reconfigured.
- Meet University Occupational Health and Safety standards.

The provision of equipment, unless otherwise stated, will be by the University. Designers to establish equipment need and design in space and service requirements.

19.3 **Standard Loose Furniture Allocations**

The following is to be used as guide only. Extent to be determined during the briefing process. Changes to personnel and structure of schools are constant. Fit out proposals tailored for individuals shall be avoided.
Table 6

<table>
<thead>
<tr>
<th>Staff Position</th>
<th>Furniture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive</td>
<td>Provision on Request</td>
</tr>
<tr>
<td>Professor, Dean or Head of Centre</td>
<td>1800mm x 1800mm L-Shape Workstation</td>
</tr>
<tr>
<td></td>
<td>One lockable mobile pedestal with optional cushion top</td>
</tr>
<tr>
<td></td>
<td>One lockable tambour unit (1200mmH x 900mmW x 450mmD)</td>
</tr>
<tr>
<td></td>
<td>One or Two bookcases with adjustable shelves (2000mmH x 900mmW x 400mmD)</td>
</tr>
<tr>
<td></td>
<td>Executive Task Chair with no arms, as per standardised list</td>
</tr>
<tr>
<td></td>
<td>Two Matching Executive Visitor’s Chairs, as per standardised list</td>
</tr>
<tr>
<td></td>
<td>One small Meeting Table approx. 900mm Diameter</td>
</tr>
<tr>
<td>Associate Professor, Senior Lecturer, Lecturer</td>
<td>1800mm x 1800mm L-Shape Workstation</td>
</tr>
<tr>
<td></td>
<td>One lockable mobile pedestal with optional cushion top</td>
</tr>
<tr>
<td></td>
<td>One lockable tambour unit (1200mmH x 900mmW x 450mmD)</td>
</tr>
<tr>
<td></td>
<td>One or Two bookcases with adjustable shelves (2000mmH x 900mmW x 400mmD)</td>
</tr>
<tr>
<td></td>
<td>Office Task Chair with no arms, as per standardised list</td>
</tr>
<tr>
<td>Manager</td>
<td>1800mm x 750mm Straight Workstation</td>
</tr>
<tr>
<td></td>
<td>One lockable mobile pedestal with optional cushion top</td>
</tr>
<tr>
<td></td>
<td>One lockable tambour unit (1200mmH x 900mmW x 450mmD)</td>
</tr>
<tr>
<td></td>
<td>Office Task Chair with no arms, as per standardised list</td>
</tr>
<tr>
<td>Professional, Tutor, Administrator & Technical Officer</td>
<td>1800mm x 750mm Straight Workstation</td>
</tr>
<tr>
<td></td>
<td>One lockable mobile pedestal with optional cushion top</td>
</tr>
<tr>
<td></td>
<td>One lockable tambour unit (1200mmH x 900mmW x 450mmD)</td>
</tr>
<tr>
<td></td>
<td>Office Task Chair with no arms, as per standardised list</td>
</tr>
<tr>
<td>Tutorial Assistant, Junior Research, Post Graduate</td>
<td>1500mm x 750mm Straight Workstation</td>
</tr>
<tr>
<td></td>
<td>One lockable mobile storage caddy with optional cushion top</td>
</tr>
<tr>
<td></td>
<td>Office Task Chair with no arms, as per standardised list</td>
</tr>
</tbody>
</table>

Note: A business case approved by Director, Facilities and Services with endorsement from respective Dean and/or Centre Directors will be required for requests for additional furniture items and/or alterations over and above the recommendations noted in this document and the ECU Planning and Design Guidelines.
19.4 **Compactus**
When specified in the brief compactus's shall be supplied and installed in the contract. Minimum distance between top of compactus and light fittings to be 500mm to comply with the University's Fire Insurance requirements.

Ensure that structure is capable of supporting compactus loads and that trip hazards are eliminated.

Compactus storage systems are not to be used in public spaces.

19.5 **Whiteboards and Pin Boards**
The following standards are applicable in all buildings:

Staff Studies
Combination of white and pinboard with pinboard section being 900mm long x 1200mm and whiteboard section being 900mm long x 1200mm high (pen rail required). Unit to be located on cross wall to which entry door opens against with whiteboard section closest to door. Provide aluminium separating section between pin/whiteboard surfaces. In general pin board surfaces are located over workstations and whiteboards to the side. Noticeboard 410mm x 275mm outside door on wall with underside located 900mm above floor.

Teaching Spaces & Lecture Theatres
The provision, location and design of white/glassboards, pinboards, projection screens and notice boards are fundamental teaching requirements.

Designers are to assess each room individually and put forward a proposal for approval. The issues that need to be addressed are:

- The primary teaching wall should allow the use of writing surface and projected image simultaneously.
- Teaching spaces increasingly require the breakdown of larger groups into smaller groups which result in the need for more than one teaching wall.
- Glare/reflection on the teaching wall is to be avoided.
- Minimum writing surface for rooms with a capacity between 25 and 50 is to be 1200 x 3000 and for rooms with capacity between 50 and 100 is to be 1200 x 4000.
- Pin boards/notice boards are to be provided to contain Safety/ Evacuation Notices, Maximum Capacity Notice, Directions for Operation of Equipment.
- To provide colour into teaching spaces, colour painted glass boards should be used in place of white boards.

19.6 **Lecture Theatre Fittings**
All benches, desks, lecterns and seating shall be provided under the contract.

Designers are to put forward optional arrangements to meet briefed need for discussion and determination.

Samples of suggested fittings and furniture are to be submitted for approval.

19.7 **Tea Preparation and Staff Rooms**
Provide:
- Boiling water/ refrigerated water together with wash up facilities.
- Storage for cutlery, cups, glasses and plates.
- Location for microwave oven.
- Location for fridge. Size and number of fridges is to be determined to accommodate storage of staff lunches.
- Variety of loose furniture – tables and chairs; sofas and coffee tables.
- Notice boards.

Meeting Rooms
- Generally the provision of food and drink to meeting rooms is by outside catering establishments. Allow for bench space for setting out.
- Tea/wash-up facilities, if required, will be specified in the brief.

20. Curtains and Blinds

20.1 General
All curtains and blinds if required shall be supplied and fitted in the Building Contract. Provision shall be made in the contract for adequate battens, pelmets etc.

All fabrics utilised in Public Building designated areas are to be flame retardant quality - complying with the relevant standard.

The criteria for determining need and selection of window treatment is:
- Glare control
- Privacy
- Security

In general, windows to office areas are to be provided with blinds with manual control. The need for automatic operation of window treatments in public areas is to be considered.

Selection of blind type to take into consideration operational need and serviceability. Full glare control is required in areas where users have no option but to remain in the area during the course of a normal working day. In general areas where users have the option to move away from areas when glare becomes apparent full control may be relaxed.

20.2 Samples
Provide samples sufficient to clearly demonstrate colour, texture, pattern and also compatibility with room requirements. All samples to be approved by University Project Manager.

21. Projection Surfaces
Projection surfaces may be painted walls or recessed proprietary projection screens. Paint type must be appropriate to the requirement.

Projection screens, if required, are to be provided under the Audio Visual sub contract.

Designers are to establish need and ensure adequate support is allowed where motorised screens are deemed necessary, provide power and switching facility.

Ensure that natural and artificial lighting does not wash out projected images.
22. Miscellaneous

Coat Hooks
Provide a coat hook behind every office door.

Cabin Hook
To be provided as required.

23. Special Equipment

In general equipment which is to be built-in is to be included in the contract. Fume cupboards; biological safety cabinets; compressors and the like fit into this category. Selection of equipment will be to stakeholder brief.

Equipment which is to be provided by users is to be identified during the briefing process and adequate space and servicing requirements provided for in the contract.

24. Door Hardware and Locks

24.1 Locks
The University requires a consistency of type of door hardware throughout its facilities.

Door Locks
Shall be Abloy Protec 570 oval cylinder (CY504N) or Abloy Protec 201 round cylinder (CY414N) Series and keyed to the University's Grand Master Key system. Locks shall be mounted such that strike is 900mm above finished floor level. No locks are to be mounted in the bottom rails of doors.

A complete lock and hardware schedule shall be prepared by the Consultant Architect and a keying schedule will be prepared by the University Project Manager.

All external and internal fire hose/extinguisher cabinets shall be fitted with "D" handles and roller catches only.

Table 7 - Lock Characteristic Table

<table>
<thead>
<tr>
<th>Location</th>
<th>Lock Type</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staff Offices General Staff Areas</td>
<td>CY504N</td>
<td>When not locked may be opened by inside or outside handles. Snib locking to inside cylinder and key lock to outside. Lever handles both sides.</td>
</tr>
<tr>
<td>Lecture Theatres Lecture Rooms Seminar/Tutorial Rooms Laboratories</td>
<td>CY504N</td>
<td>Cylinder lock to outside. Lever handles both sides. When locked by key, outside handle inoperative but inside handle always free to open door.</td>
</tr>
<tr>
<td>Exit Doors</td>
<td>CY504N</td>
<td>Opening Out. Key from outside retracts latchbolt. Key on inside locks outside handle. Inside handle always free.</td>
</tr>
<tr>
<td>Services Cupboards, Plumbing Ducts</td>
<td>CY504N or CY414N</td>
<td>Nightlatch with pull handle externally. Turn snib on inside opens door.</td>
</tr>
</tbody>
</table>
24.2 Keys

The University maintains a key management policy which is administered by the ECU Manager Security and Traffic Services and is available on the ECU website http://www.ecu.edu.au/GPPS/policies_db/az_listing.php.

Lead Consultant to develop a key schedule in conjunction with ECU Manager Security and Traffic Services and the University Project Manager.

Key Schedule to:
- Follow hierarchy set out in this Planning and Design Guideline.
- Sub mastering to follow compartments identified in the Security Plan.

Note – key override is not to be provided to access points fitted with electronic access control.

Lock cylinders and keys to new works will be Abloy Protec. If works are within an area covered by the old Lockwood system, advice on system selection is to be sought from the University Project Manager.

Key scheduling will be carried out by the University. Keys from the manufacturer are to be delivered direct to the Manager Security & Traffic Services. If key locking is required in the construction process, construction keying is to be utilised.

All buildings to be keyed differently and to be numerically identified.

Where more than 6 keys need to be issued for a single door the use of card controlled access is to be considered.

24.3 Building Keying System

![Building Keying System Diagram](https://via.placeholder.com/150)

- GMK: Campus Master Key
- MK: Building Master Key
- SMK1, SMK2, SMK3: Sub Master Keyed to differ group
- Keyed alike group

System should be configured so that only keys to individual locks need to be issued to building occupants.
24.4 **Service Keying System (Building Fabric.)**

Figure 4 – Joondalup
Figure 5 – Mt Lawley and South West
24.5 **Key Stamping Policy**

All keys and cylinders shall be stamped to the following format.

<table>
<thead>
<tr>
<th>Campus ID</th>
<th>Building No</th>
<th>Sub Master</th>
<th>Individual Lock</th>
<th>(issue)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>21</td>
<td>3</td>
<td>12</td>
<td>(2)</td>
</tr>
</tbody>
</table>

24.6 **Door Furniture**

This clause is to be read in conjunction with section on Design for Persons with Disabilities.

Lock furniture shall be Lockwood 1800, 2800 Series satin chrome finish or to match existing. Furniture selection is to comply with University Accessibility guidelines.

Engraved push pull plates are to be provided where required. 2mm stainless steel kick plates are to be provided in areas of high wheelchair or trolley traffic is expected.

In confined spaces such as toilet cubicles, furniture to be selected to allow door to be removed in an emergency.

In order to provide easier control for people with disabilities all cubicle doors to toilets/showers are to be fitted with Lane M.I.B. (Mortice Indicator Bolt) with extended handle. All doors which may, during operation, damage adjoining finishes shall be fitted with effective door stops. Fitting of door stops is not to compromise required clear opening dimension. Acoustic door seals are to be provided where acoustic isolation is required.

Coat hooks are to be provided behind every office and toilet cubicle door.

24.7 **Door Closer**

Shall be provided to entrance doors, external doors, lecture theatre doors, plant rooms, toilets, air locks and fire doors. Type shall be “cam” action type approved by the University. Hold open controls are not to be used for security doors or operable leaves in air conditioned spaces unless otherwise directed. Door closers shall be provided to doors which are at the perimeter of an air conditioned zone and must be capable of complying with BCA requirements on door opening force to suit persons with disabilities.

24.8 **Push/Pull Plates and Handles**

Shall be provided where required.

24.9 **Kick Plates**

Provide a 300mm x 0.9mm satin stainless steel kick plate screw fixed to both sides of doors to toilets, cleaner’s rooms, external doors, general teaching areas and laboratories.

24.10 **Hold-Open Devices**

Electromagnetic hold open devices shall be provided to all fire-doors in high traffic areas which shall automatically release the door, allowing closure, in the event of any fire or smoke alarm activated at the Fire Indicator Board.
24.11 **Toilet Cubicle Latch Sets**

In order to provide easier control for people with disabilities all cubicle doors to toilets/showers are to be fitted with Lane M.I.B. (Mortice Indicator Bolt) with extended handle.

25. **Signage**

Signage is divided into the following categories:

Way finding Signage. Being Signage which guides people from the campus boundary to a particular building front door.

Building Signage. Being signage which guides people from the front door of a building to a particular occupant or facility.

Statutory Signage. The contractor shall supply and install all statutory signage in accordance with the requirements of the BCA.

25.1 **Corporate Signage**

25.2 **Room Number and Room Name Signs**

Room number and notation signs shall be type 35mm clear anodised aluminium sign holders using "Rowmark" range engraving stock (black lettering in smooth silver metallic surface).

Door signs to be affixed to face of doors at a height of 1500mm to the underside.

Lettering to be 16mm high Helvetica with first letter of each word to be a capital and all others being lower case.

Plate size to be 500mm long containing 150mm plate for room number and 350mm for notation.

Where two extrusions are required one above the other, they are to be the same length. Where room number is not required, notation plate is to be 500mm long.

(i.e.) typical sign layout

```
Campus Registrar
Dr George Macrides  8.112
```

The Christian name letter and the first letter of the surname are to be in capitals whilst all other letters are to be lower case. Gender identification is not to be provided.

Where the occupant is a Doctor, Professor or Associate Professor, then the following may, if required, prefix the occupant’s name:

(i.e.) Dr
Prof.
Assoc. Prof.

Signs for the following are also to be installed on appropriate staff study doors in association with the occupant’s name.
Titles of offices or rooms are also to be installed and examples of such titles are:

- Campus Registrar
- Campus Manager
- Student Services
- Cashier

Herewith examples of typical standardised door signs:

- Mech. Plant Room (Service type areas)
- Art Education 1 (Specialist type teaching areas)
- Switchroom (Service type area)
- Switchboard (Service type area)
- Audio Visual (Service type area)
- Lecture Room (General type teaching area)
- Electrical (Riser shaft with door)
- Cleaner
- Store
- Communications (Service type riser shaft/cupboards)
- Tutorial (General type teaching area)
- Fire Hose Reel Symbol (coiled hose)
- Stair
- Plumbing Duct
- Lift Motor Room
- Lecture Theatre 3
- Chemistry Laboratory (Specialist type teaching area)
- Flammable Store (Specialist type store)

Where fire doors occur then a sign complying with the Building Code of Australia (Section D) is required to be installed. An internal access door leading to a fire isolated exit/stair is required to have sign mounted on the door facing the person seeking egress. Doors leading from a fire isolated exit requires a sign on both sides.

Signs to Lift Motor Rooms are to comply with the Lift Installation Code (“Danger Entry of Unauthorised Persons Prohibited” - in 25mm high Helvetica upper case letters).

25.3 **Internal Room Numbering System**

Room numbers will be issued by the University Facilities Planning Manager. It is essential that numbers be determined at the beginning of contract documentation when arrangement of rooms has been fixed.

The following is a general overview only.
Room numbering system to be organised in a clockwise system moving systematically through the building ensuring that dead end pockets are avoided. Room numbering is to be in numeric rather than alpha characters.

Where rooms are accessible from a main space having a room number, then the room number is to be a sub "alpha" notation of the "accessible main space". Only one door per room is to have the room number applied.

Room numbers are to be systematically allocated down one side of corridors and returning up the other side.

The room numbering system is to incorporate the following:

- First two digits reflecting the building number
- Next digit reflecting whether it is ground floor (1), first floor (2), second floor etc.
- Last set of digits to indicate room number

Whenever a room numbering system is being implemented, the following items are required to be duly updated:

Keying Register
Telephone Directory
Asset Register

Room numbers are to be applied to the doors of the following spaces:

Teaching areas
Staff studies
Stores
Plantrooms
Cleaners' areas
Amenities areas (toilets, change rooms, etc)
Switchrooms
Lift motor rooms
PABX rooms
Service ducts
Switchboards
Small service enclosure cupboard
Fire Hose Reels

Room numbers are not to be placed on doors to the following:

Lift shafts
Corridors
Foyers
Stairways

Room number will be assigned to the following areas (for Asset Management purposed) but no plates will be provided.

Corridors
Foyers
Stairways
25.4 **Internal Directional Signs**

25.5 **Symbols**

“Rowmark” range engraving stock (black lettering in smooth silver metallic surface), or to comply with regulatory requirements or standards.

For fire type symbols utilise red instead of black lettering/figure.

Where symbols are used (such as female figure symbol) then room number is to be located under the symbol and be the width of the symbol.

Use standard symbols for signs as follows:

- Female Toilets - figure symbol
- Male Toilets - figure symbol
- People with Disabilities - standard international symbol
- Hose Reels - 200mm x 200mm - plate with coiled hose insignia mounted at right angles to wall and fire extinguisher symbol if applicable

25.6 **Internal Signs that are set 90° to Walls**

Engraving laminate to be bonded both sides to a 3mm aluminium sheeting core.

Size of lettering and plates to be as described previously.

Colour to signs to be black lettering in smooth silver plate.

Fixing of signs is to be by utilising masonry anchors through 20mm x 20mm x 1.6mm aluminium angle (painted to match grey of engraving laminate).

Underside of sign to be set 2100mm above floor level.

25.7 **Directory Boards**

Provide externally and undercover at the main entry (location nominated by University Project Manager) a building directory board.

For legibility campus wide, directory boards shall be standardised. Provide proposal for approval proposal shall match that of adjoining existing buildings

25.8 **Braille and Tactile Signage**

Braille and tactile signage shall be used where required by the BCA.

All signs including directory boards that are within normal reach, shall be tactile signs.

26. **Waste Management Plan**

26.1 **Uncleared Land at ECU**

An environmental assessment of the site to be undertaken by a third party as nominated by the University Project Manager. At least one annual assessment must be undertaken in spring and will include photo evidence of flora and fauna on site. The completed assessment must be reviewed by the University Project Manager. The assessment must include:
- Significant trees and areas of significant value to be maintained.
- Identification of nesting sites and the potential for relocating nesting sites.
- Grass trees suitable for retention and incorporation into the landscape design.
- Flora suitable for transplantation.
- AS4970-2009 must be considered in the assessment.
- Environmental risk assessment must be completed.
- Identification of fauna

The environmental assessment must be integrated into the building design process to ensure that flora to be retained is incorporated with the design of the building.

The site should be checked prior to clearing to ensure there are no protected species such as orchids or animals such as bobtails, snakes, lizards or birds living on that site.

The topsoil is rich in nutrients, organic matter, micro-organisms and could be used in post construction in garden beds and also the topsoil contains a rich supply of seeds that will germinate.

Where trees cannot be retained they should be milled and/or mulched. The mulch is be used on ECU grounds and in the case of milling timber must be used in the building site.

The development process must be documented for historical purposes.

ECU sites for clearing must be directly linked to the masterplan.

- The contractor must implement a Waste Management Plan (WMP) – this must identify the different types of waste to be produced and waste management and minimisation strategies. The WMP must take into consideration the other waste criteria;
- A 60% (by mass) of all construction and demolition waste is to be re-used or recycled (based on the green star rating tool);
- Waste produced in the construction phase must be documented and recorded to be reported quarterly to ECU for the life of the project.

26.2 In-buildings-requirements

A dedicated storage space for recycling that facilitates the recycling of com mingled recyclables and paper/cardboard waste used within the building:

- Waste stations for com ming and general waste – see standard waste station section below and paper/cardboard bins to be supplied by ECU (extra requirements on request).
- All signage to be supplied by ECU – see standard signage section below.
- All recycling bins must be able to handle the recyclable waste produced for the allocated catchment area for one day.
- Com mingled bins are to be located in all kitchen areas and throughout the building were required i.e. other teaching and non-teaching areas.
- Paper/Cardboard bins to be located next to or near allocated photocopy areas and throughout the building were required i.e. other teaching and non-teaching areas.
- All waste stations must be able to have a bin liner placed in them.
- All waste stations must be placed in practical, visible, high use areas.
- Number and placement of waste stations to be determined by design consultant.
- Accessibility for collections needs to be considered when designing waste station areas and the path of travel for moving bins form the storage area to the identified collection point.
26.3 Suggested Designs for the Different Areas

For Kitchen areas:
- For areas of smaller volume – 50L bin as pull out draw under the kitchen bench for general waste and comingle waste.
- For areas of larger volume there are two options:
 1. 50L bin as a pull out drawer for general and comingle waste and 100L standalone waste station; OR
 2. 50L bin as a pull out drawer for general and comingle waste and 2 x 50L standalone waste stations.

For other teaching and non-teaching areas:
An area will need to be provided for the following:
- 50/100L waste station for comingle waste and; 120L light blue sulo bin for paper waste.

26.4 Other Bin Requirements
An area will need to be provided for the following bins within buildings:
- Printer and toner cartridges – to be supplied by ECU.
- Mobile phone and batteries – to be supplied by ECU on request.

Standardised Signage
- Internal waste stations have the standard signage applied where possible;
- All waste stations are to have the relevant signage as per below:

Figure 6

General Waste Signage Commingled Recyclables Signage Paper Recycling Signage
Waste

The following items go in the bin

- Food Scraps
- Used Food Containers
- TAKEAWAY COFFEE CUPS
- Serviettes
- Plastic Bags
- Ceramics

These items go to landfill

Recycling

If you put food or liquids in this bin, none of the contents in the bin can be recycled.

The following items go in the bin

- Empty Plastic Bottles
- Empty Plastic Containers
- Empty Glass Bottles
- Empty Cans
- Paper
- Cardboard
- Newspapers

No food scraps or liquid

Joondalup Recycling Station

Mt Lawley & South West Recycling Station
External Bin Requirements

Please see below the required enclosures for waste bins that are located outside of buildings (manufacturer of waste enclosures is Commercial Systems Australia Pty Ltd):

- 120L/240L stainless steel enclosure for yellow top sulo bin for comngled waste.
- 120L/240L stainless steel enclosure red top sulo bin for general waste.

Figure 7

All external bins are to display the standard signage as above where possible.
Building Services

General
Designers interpreting these guidelines are to understand that changes to technology and policy may outpace the content of these guidelines. Prior to the calling of tenders for building services the following must be approved by the ECU Project Manager and the appropriate Services Manager:

- Scope document which clearly indicates intent. Preferably in diagrammatic format.
- Equipment Schedules where appropriate.
- List of suggested tenderers

Specification
The content of these guidelines must be fully integrated into consultant specifications. The practice of appending these guidelines to generic specifications will not be accepted. Generic specifications, if used, must be edited to eliminate any conflict with the content of these standards.

Surveyed “As Constructed” In Ground Services
All in ground services are to be surveyed by a surveyor picking up location, inverts at critical intervals and levels of tops of pits.

Information to be aligned to GDA94 Coordinates to allow insertion into the University Master Site Services Plan.

27. Access, Maintenance and Manuals

Maintenance of the University's facilities is funded from its recurrent resources. It is therefore imperative to ensure that all facilities are constructed bearing in mind life cycle costs and maintainability.

Designs will be rejected which make inadequate provision for:
- servicing and maintenance;
- easy removal and replacement of plant and equipment;
- access;
- durability;
- those which opt for minimising capital cost at the expense of on-going maintenance.

27.1 Operating and Maintenance Manuals

Operating and Maintenance Manuals are to be provided prior to Practical Completion for every building project and is to address all finishes and services. These manuals shall include but not be limited to:-
- colour schedules;
- operating instructions and technical schedules;
- maintenance instructions;
- supplier information;
- copies of all as-installed drawings in electronic format.
- control and electrical plans shall be complete with terminal numbers corresponding to wiring ferrules and shall be cross referenced as necessary;
- commissioning data, set points, flow rates, timer settings etc.
- two hard copy manuals and one electronic copy.
27.2 Access for Engineering Services

Simple maintenance procedures throughout the buildings are vital, and shall be reviewed with the University before going to tender.

The design and construction materials shall reflect low maintenance considerations. All fabric, structural and service components shall be readily accessible and shall not be labour intensive at the repair stage.

Consultants shall ensure that they indicate:

- how each item of plant is to be installed initially;
- how the University’s routine service personnel will access each plant item;
- the method to be used in changing the largest item of plant in any plantroom or plant area.

“Adequate access” for routine servicing means the sufficient space for a plant mechanic, irrespective of working age, to reach all items requiring routine service safely and without undue stress.

Any equipment installed in a trafficable ceiling space or on the roof, shall have a permanently fixed ladder and easily opened trap door. The design and location shall be approved by the ECU Project Manager.

Mechanical and Electrical Plant and equipment, particularly those requiring manual operation such as electrical control panels, or routine maintenance such as pump, fans, etc. shall have safe and comfortable access. A “loose” fit is essential to enable work to be carried out around them.

The Project Architect shall ensure that there is co-ordination between the Structural Engineers and Service Engineers to allow incoming underground services, in the form of pipes and cables, to pass through the building footings.

Adequate spare conduits to allow for future growth of services shall be allowed. Such things as electrical and telephone cables may be too big and heavy to be pulled around conduit bends; straight access, without bends or obstructions, shall be provided.

27.3 Plant Rooms

The Project Architect shall request from consultants the range of sizes for all items of mechanical and electrical plant. The Architect shall ensure that the final selection of mechanical and electrical equipment will not require additional space.

The Project Architect and Consultants shall ensure that the plant room layout at the design stage provides for future expansion.

Direct access from corridors to roof areas, plant rooms, tunnels, etc. shall be provided where possible to enable the independent control of these areas by Operations Branch.

Plant rooms shall be located convenient to the most direct point of vehicular access which can be achieved without the introduction of extensive service road connections.

It is preferred that plant rooms be located at roof top or basement level rather than in the body of the building. Provision shall be made in elevated plant rooms for hatches and lifting
equipment to facilitate conveyance of equipment to ground. Where plant rooms are built in tier fashion within the building, access ladders shall be provided between levels within the plant room.

Plant room floors shall be graded to floor outlets in order to permit hosing down of floor. Floor surfaces are to be sealed against spillages and flooding by bunding or other approved methods and painted with paving paint.

All pipework penetrations to be bunded.

Plant rooms shall be designed so that the noise level measured with all the equipment operating under full load will not exceed the current exposure standard less 3dbA. Where this cannot be achieved, the Project Manager shall be consulted.

Plantrooms floors shall be designed to be washed down for maintenance and cleaning and shall be provided with water taps.

28. Mechanical Services, Heating, Ventilation and Air Conditioning

28.1 General

This section of the Design Standards outlines the University's minimum requirements for air conditioning and ventilation systems for both new buildings and buildings being refurbished.

The following functional requirements are to be given special design consideration:
- Energy efficiency.
- Simplicity of design, particularly in relation to controls.
- Accessibility, ease of operation, simple maintenance, combined with minimal maintenance frequency.
- Whenever possible, life cycle cost analysis shall govern the selection of systems and equipment and the University may call for calculations on competing systems.
- Chilled water systems are preferred in areas that are in close proximity to existing or planned chilled water reticulation systems. It is accepted that chilled water systems may initially require a higher capital cost than DX systems, but, on a life cycle cost analysis, may be preferable.
- Allowance for adequate space for installation and maintenance of machinery whether it be in designated plantroom, ceiling spaces or otherwise. Lack of space is not considered an acceptable constraint on mechanical design.
- Compliance with all statutory requirements.
- Compliance with AS3000. All required test results including earth looping impedance testing shall be issued with “As Constructed” documentation.

All staff studies are to be provided with an air conditioning system conforming to the following:
- Staff occupy their offices approximately 15 hours per week.
- System must have economy cycle where systems are greater than 20KW(R).
- Proposed system must be low maintenance and energy efficient.
- Sensors are to be located 1200-1500mm from the outside wall and on the room dividing wall where the whiteboard/pin board is located.

28.2 Preferred Contractors

Contractors either tendering or working on projects at Edith Cowan University must be approved by the manager Mechanical Services.
28.3 **Sustainability**

All utility consumption is to be metered and data from meters presented in a form to allow comparison against historical data to enable fine tuning of systems to achieve maximum efficiency. Current strategy is to aggregate all utility meter data under the BMS system.

Metering proposal to be approved by the Manager, Mechanical Services prior to implementation. Data gathering and reporting systems must be fully operational before practical completion.

28.4 **Design Conditions**

Careful consideration should be given to the design conditions for various areas.

(i) **External Design Conditions - Summer**
 (a) Teaching Areas
 37°C DB
 24°C WB
 (b) Office & Research Areas
 36°C DB
 24°C WB

(ii) **External Design Condition - Winter**

 7°C – Non critical applications
 4°C – Critical applications

28.5 **Performance Standards**

Air conditioning plant shall be designed to maintain the following internal design conditions:

(i) **Internal Design Conditions - Summer**

 22.5°C DB +/- 1.5°C
 55% RH +/- 5% RH
 unless specifically nominated otherwise.

(ii) **Internal Design Conditions - Winter**

 Internal Winter Design Conditions shall be:
 22.5°C +/- 1.5°C

28.6 **Room Occupancy Number**

Can be taken to be approximately equal to those shown below:

- General Office
 5.0m²/person
- Library Reading Rooms
 2.5m²/person
- Laboratory - Undergraduate (1st Year)
 3.7m²/person Labs will be variable.
 Note that utilisation of some labs will be low.
 Configure for energy efficiency
- Laboratory - Undergraduate (other years)
 4.7m²/person
- Laboratory - Postgraduate
 12.0m²/person
- Seminar Rooms
 2.0m²/person
- Lecture Theatres
 1.1m²/person
- Lecture Class Rooms
 2.0m²/person

Where room usage and corresponding population levels are not listed, forward a request to ECU for the relevant information. Where this information is not available, conform to AS1668 Part 2 as nominated by the Building Code of Australia.
28.7 **Equipment Loads**

Equipment loads can be approximately equal to those shown below and are subject to confirmation by the University Project Manager.

- General Office 10 W/m²
- Laboratories 30 W/m² To be individually determined
- Computer Terminal Rooms 100 W/m² To be individually determined

Where equipment loads have not been identified for a particular area, forward a request to ECU for the relevant information.

28.8 **Fresh Air Rates**

Shall be in accordance with AS 1668 Part 2 as nominated by the Building Code of Australia.

28.9 **Ventilation Requirements**

Shall be in accordance with AS 1668 Part 2 as nominated by the Building Code of Australia.

In reference to toilet exhaust systems, exhaust air flow rates shall be calculated to meet the minimum requirements of AS1668 Part 2 and the Health Act. Note that where a toilet exhaust system serves more than one compartment (WC), then duty/standby exhaust fans, complete with run/fault lights and automatic change over on fault, are required as stipulated by the Health Act.

28.10 **Ventilation in Photographic Darkroom Areas**

All fumes are to be extracted at source and systems are not to exhaust fumes by extracting past operator's breathing zone.

For Ilfospeed fixers - not less than 15 air changes/hour for mixing and processing areas.

For Ilfospeed Multigrade Developer - not less than 15 air changes/hour for mixing and processing areas.

For Hypain Rapid Fixer - not less than 15 air changes/hour for mixing and processing areas.

For any product containing:

- Hydroquinone or Sodium Formaldehyde Bisulphite provide 10 air changes per hour.
- Methylaminophenol Sulphate (such as Kodak Dektol Developer) provide 10 air changes per hour.
- Acetic acid (such as Kodak Acedic Acid 28%, Kodak Indicator stop bath) provide 10 air changes/hour. Local exhaust required.
- Trichloroethane (such as Kodak Film Cleaner) allow 10 air changes per hour general room ventilation.

Local exhaust required where the following are used:

- Ethoxyethanol, Hydroxylamine Sulphate, p-Phenylene-Diamene, Tertiary Butylamine Borane, Selenium Oxide, Platinum Chloride, Potassium Oxalate, Potassium Sulphide, Potassium Permanganate, Potassium Cyanide, Potassium Dichromate, Ammonia, Mercuric Chloride, Acetic Acids, Catechin.
28.11 **Fire & Smoke Control**
Shall be in accordance with AS 1668 Part 1 and as nominated by the Building Code of Australia. Certification and commissioning documentation, maintenance and testing procedures are all to be included in the operating and maintenance manuals. Fire/smoke separation to be clearly indicated in documentation.

28.12 **Humidity Control**
Humidity control will not be provided unless specifically called for or where special circumstances dictate. Where special conditions are required these will be nominated by the user and agreed by the University Project Manager.

28.13 **Chilled Water Temperatures**
For design purposes the following chilled water temperatures are to be used:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Water</td>
<td>7.0°C</td>
</tr>
<tr>
<td>Return Water</td>
<td>14.0°C</td>
</tr>
</tbody>
</table>

Leaving chilled water temperature set point shall be re-scheduled from 7.0 °C to 12.0 °C based on outside air temperature. Refer to Air Conditioning Control Functionality.

Special attention must be paid when modifying or extending an existing chilled water system with respect to the impact on the existing plant capacity, distribution system and controls. The designer shall review the design parameters of all equipment on that system to ensure design chilled water temperatures and flow rates are normalized to meet the current design standard for the site and that the piping and valve configurations for the system are in accordance with the design intent of the system.

28.14 **Heating Water Temperatures**
For design purposes the following heating water temperatures are to be used:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Water</td>
<td>75.0°C</td>
</tr>
<tr>
<td>Return Water</td>
<td>55.0°C</td>
</tr>
</tbody>
</table>

Leaving heating water temperature set point shall be re-scheduled from 75.0°C to 55.0°C based on outside air temperature. Refer to Air Conditioning Control Functionality.

Special attention must be paid when modifying or extending an existing heating water system with respect to the impact on the existing plant capacity, distribution system and controls. The designer shall review the design parameters of all equipment on that system to ensure design heating water temperatures and flow rates are normalized to meet the current design standard for the site and that the piping and valve configurations for the system are in accordance with the design intent of the system.

28.15 **Condenser Water Temperatures**
For design purposes the following condenser cooling water temperatures are to be used:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supply Water</td>
<td>29.5°C</td>
</tr>
<tr>
<td>Return Water</td>
<td>35.0°C</td>
</tr>
</tbody>
</table>
Leaving condenser water temperature set point from the cooling tower shall be re-scheduled from 29.5°C to 21.5°C based on a combination of outside air temperature, time of day and charge mode of chilled water storage tank. Refer to Air Conditioning Control Functionality, Section 21.26.

28.16 Noise and Vibration Control

The system shall be designed to minimise the transmission of noise and vibration from air-conditioning and mechanical equipment (all in accordance with the relevant Australian Standard and noise levels listed below). Sound attenuators and/or internally lined duct work shall be installed where necessary to minimise the transmission of fan noise.

Care should be taken to minimise transmission of vibration to the structure from mechanical equipment. Where reciprocating or rotating equipment is installed these shall be isolated from the structure by vibration isolators. Reciprocating or rotating equipment shall be mounted on inertia bases weighing not less than 1.5 times the weight of the equipment. The maximum allowable noise levels are scheduled below:

- General Offices NR 35-40
- Laboratories NR 35-40
- Lecture Theatres NR 25-30
- Seminar Rooms/Class Rooms NR 30-35
- Individual Offices NR 35-40
- Library NR 35

28.17 Air Handling Systems

Air-conditioning shall normally be provided by the use of air-handling equipment using chilled water supplied from the University's Central Chiller Plant. Direct expansion (DX) refrigeration systems shall not be used unless it can be demonstrated that required conditions cannot be achieved by use of chilled water. The use of direct expansion, window mounted or through the wall room air-conditioners (RACs) is prohibited except in transportable buildings or other locations approved by the University Project Manager.

To achieve better control over operation, unitary type air-handling systems serving a single room or small number of similar rooms are preferred over large central station air-handling systems. Air handling systems serving more than one floor shall not be used. Additionally multi-zone constant volume reheat systems shall not be used. Floor mounted console style chilled water FCU's shall not be used.

All air conditioning systems shall have adequate fresh air (in accordance with current Code requirements of AS 1668 Part 2) drawn from outside the building at locations well away from discharges from cooling towers, fume exhausts, traffic, cooking areas, chemical storage areas (in accordance with current Code requirements of AS 3666).

The minimum and maximum outside air dampers shall be motorised.

All air handling systems to be of Fan Coil Industries, G.J Walker Air Handling Systems, Airwise Engineering, Carrier manufacture or approved equivalent.

Ensure access is easy and safe to all major components, including motors, fans and coils. Provide lifting points (especially to fan motors) as required to prevent damage to the equipment. Ensure there is adequate physical access in the plantrooms to manoeuvre equipment and carry out maintenance. Access to fire dampers shall be provided.
Air flow switches to be piped across the suction and discharge sides of fans in air handling systems.

Where appropriate, air handling systems shall be configured to allow for economy cycle, warm up cycle and night purge control routines to minimize energy consumption. Base heating shall be via heating water coils located in either the air handler or zone ductwork, depending on the system design. Electric duct heaters at VAV boxes shall be provided for trim heating to obtain approval to use heating water pipework to VAV. The consultant will need to prove the economic/running cost viability.

Consideration should also be given to the use of heating water for trim heating at VAV boxes where cost justification based on ongoing energy and maintenance demonstrate savings. The use of fan assisted constant volume VAV boxes may be used as an alternative to maintain minimum airflow rates to centre zones and to make use of secondary air as “free” heating, provided that the energy savings can be justified over the increase in cost and maintenance. Similarly, the use of variable volume fan assisted VAV boxes with electric reheat may be used on perimeter zones, provided that the energy savings can be justified over the increase in cost and maintenance. Cost justification in writing will be required to be submitted to ECU’s Manager – Mechanical where fan assist VAV boxes are proposed.

28.18 Chilled Water Systems

Joondalup Campus

The existing chilled water system has the following characteristics:

- Central chilled water plant located in Plantroom 2 in Building 16, consists of 3 off water cooled chillers and 1 off 2.2 million litre chilled water storage tank
- The chilled water storage is discharged during the day as a “phantom” chiller in order to reduce peak demand. The storage tank is charged by the chillers at night utilising the digital control system
- The chilled water storage tank stores chilled water at approximately 5.0 °C and mixes it with return water as required to achieve desired supply water temperature set point
- Another central chilled water plantroom is located in building 24 consists of 2 off water cooler chillers.
- Chilled water supply temperature is reset from 7.0 °C to 12.0 °C, based on variation of outside temperature
- The chilled water systems are a decoupled primary water systems at the central plants with secondary variable speed pumps utilised for chilled water distribution to the Campus
- A reticulated chilled water distribution system across the campus serving most buildings utilising a two way control valve arrangement with 3 way valves on index legs

The secondary chilled water pumps are controlled via differential pressure sensors located in Buildings 1, 2, 8, 16, 18, 19, 21, 22, 23, 24, 31, 32 and 34. Consideration for an additional differential pressure sensor to form part of the chiller plant control logic shall be assessed for each new building.

- A cooling call is generated from each building which enables the chilled water plants. The cooling call is typically generated via any chilled water valve that opens more than 70% and the cooling call is disabled when all chilled water valves for that building is closed less than 20%
- The chilled water system utilises a pressurised expansion tank located in Building 16. The original site chilled water header tank located in Building 18 is isolated now that the thermal storage facility has been installed.
- The chilled water plant in building 16 utilises the Schneider INET Building Management Control System which interfaces with the Andover and the Struxureware Building Operation
Building Management Control System (BMCS), the chilled water plant in building 24 utilises the Andover Continuum Building Management Control system (BMCS).

- There is a smaller chilled water plant located in Building No 4 which is used as a back-up for Building 4, 5 & 6 and 30, in the event that chilled water conditions are lost from the central plant. The chiller and dedicated boiler plant are located in lower level plantroom in building 4. The expansion tank for this chilled water system is located in Building 6 air handling plantroom. This chiller and boiler plant operates under an Andover control System.

- All new buildings Chilled water supply for cooling shall be provided from the Campus existing Chilled water ringmain, the designer must comply with the existing Campus Chilled Water master plan and design principles and consult with the University’s Manager of Mechanical Services for any proposed system. The designer must check the existing Chilled water plantrooms capacities and establish if there is a need to increase these centralised capacities in line with the Chilled water master plan when designing a system for any new buildings.

Mt Lawley Campus

The existing chilled water systems have the following characteristics:

- Central chilled water plant located in Plantroom 6 in Building 19 consists of 3 off water cooled chillers with a fourth chiller located in Building No 3, Plantroom No 1
- There is another stand-alone chilled water plant - (Trane Chiller in Plantroom 4) Serving Part Building 1
- Chilled water supply temperature is reset from 7.0 °C to 12.0 °C, based on variation of outside temperature
- The chilled water system is a decoupled primary water system at the central plant with secondary variable speed pumps utilised for chilled water distribution to the Campus
- A reticulated chilled water distribution system across the campus serving most buildings utilising a two way control valve arrangement with 3 way valves on index legs
- The secondary chilled water pumps are controlled via differential pressure sensors located in Buildings 3 (Plantroom 2 tunnel) Building 1 and 8.
- A cooling call is generated from each building enables the chilled water plant. The cooling call is typically generated via any chilled water valve that opens more than 70% and the cooling call is disabled when all chilled water valves for that building is closed less than 20%.
- The chilled water system utilises an expansion tank located in Building 19 Plantroom 6 in the cooling tower compound.
- The chilled water plant utilises the Schneider INET Building Management Control System which interfaces with the Andover Continuum and the Struxureware Building Operation Building Management Control System (BMCS).

If a new building is being planned to run off any of the existing chilled water systems, the designer shall review that system in its entirety to ensure that the existing pipe sizes are capable of delivering the design flow rates, existing pump heads and capacities are not affected, the existing chillers have the capacity, existing expansion tanks are suitable in height and size and that the new control system interfaces with the existing control system for the plant. Consideration for an additional differential pressure sensor to form part of the chiller plant control logic shall be assessed for each new building.

South West Campus

The South West Campus buildings are serviced by various ducted split and packaged direct expansion (DX) air conditioning systems.

28.19 **Heating Water Systems**

Joondalup Campus
The existing heating water systems have the following characteristics:

- Two boilers in Building 1B plantroom provide for space heating requirements to Buildings 1 and 2.
- One boiler in Building 4 Plantroom 1 provide for space heating requirements to Buildings 4, 5, 6 and 30.
- A single boiler located in Building 8 and one in Building 8A provide for space heating requirements to each building.
- A single boiler provides space heating requirements in Building 17.
- A single boiler provides space heating requirements in Building 18.
- A single boiler provides space heating requirements in Building 23.
- A single boiler provides space heating requirements in Building 19.
- A single boiler provides space heating requirements in building 31.
- A single boiler provides space heating requirements in building 21.
- A single boiler provides space heating requirements in building 32.
- Two boilers provide space heating requirements in building 34.
- Coil control valve arrangement is based on a two way valve system with system differential pressure controlled by a single bypass valve located in each plant room.

Mt Lawley Campus
The existing heating water systems have the following characteristics:

- A boiler located in Plantroom 7B of Building 1 provides for space heating requirements to part of the eastern end of building 1 while a boiler located in Plantroom 3 Building 4 provides space heating to the remainder of Building 1.
- Two boilers in Building 3 Plantroom 1 provides for space heating requirements to Buildings 3, 5 and 6.
- A single boiler located in Plantroom 5 of Building 12 provides for space heating requirements to Building 8 and 12 and domestic hot water to Buildings 12, 14 and 15.
- Two boilers in Building 19 Plantroom 6 provides for space heating requirements to Buildings 13, 16, 17 and 18.
- A single boiler located in Building 15 provides for space heating to Building 15.
- A single boiler provides for space heating requirements in building 10.

Coil control valve arrangement is based on a two way valve system with system differential pressure controlled by a single bypass valve located in each plant room.

If a new building is being planned to run off any of the existing heating water systems, the designer shall review that system in its entirety to ensure that the existing pipe sizes are capable of delivering the design flow rates, existing pump heads and capacities are not affected, the existing boiler have the capacity, existing expansion tanks are suitable in height and size and that the new control system interfaces with the existing control system for the plant. Consideration for an additional differential pressure sensor to form part of the boiler plant control logic shall be assessed for each new building.

South West Campus
The South West Campus buildings are serviced by various ducted split and packaged direct expansion (DX) air conditioning systems.

28.20 Ductwork and Registers
In general, low velocity systems are preferred. Ductwork shall be designed to limit duct air velocities to a maximum of 6.5 m/s for constant volume air conditioning systems and exhaust
ventilation systems. However main riser ducts shall be capable of handling an increase of 15% in air quantity. Fans and motors should be selected with this in mind.

Where variable Air Volume systems are deemed appropriate to provide zoning flexibility, then ductwork shall be designed to limit air velocities to 10.5 m/s in riser ducts and a maximum of 8.5 m/s at VAB box inlets. Static regain should be utilised wherever possible in sizing the ductwork.

Main distribution ductwork shall be galvanised sheet metal ductwork, thermally and acoustically insulated as required to suit the application. The use of fibre glass insulation will not be accepted on all rigid and flexible ductwork. Where alternatives are available, they shall be used upon ECU’s approval.

All flexible ductwork used for supply air or return air shall be externally insulted to reduce heat transfer. Flexible ductwork shall be in accordance with AS 1668 Part 1 and shall have early fire hazard properties not exceeding the following indices when tested in accordance with AS 1530 Part 3 and AS 4254:

<table>
<thead>
<tr>
<th>Property</th>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spread of Flame</td>
<td>0</td>
</tr>
<tr>
<td>Smoke Developed</td>
<td>3</td>
</tr>
</tbody>
</table>

Heater bank linings shall be in accordance with AS 1668 and be constructed from “Harditherm 700” or approved equivalent.

Ceiling diffusers shall be of the square louvre faced type for typical applications and shall be of Variflow, Harts, Dragon or other approved manufacture. Circular Krantz diffusers are acceptable however correct engineering and selection as prescribed by Krantz PTY LTD is to be adhered too. Additionally, where motorized Krantz diffusers are installed, access to the diffuser motor for servicing is to be provided to the acceptance of ECU. Ceiling diffusers shall be retained in position by a threaded screw/bolt arrangement. Where it is proposed to use an alternative arrangement, approval from ECU’s Manager – Mechanical Services is required. All diffusers shall incorporate insulated cushion heads with flexible ductwork to spigot take-off from main distribution duct, to allow easy relocation of diffusers as required. Where diffusers are located in roof spaces, the back surface of the diffuser exposed to the roof space shall also be insulated to prevent condensation on the diffuser. The insulation shall be glued with a suitable adhesive to prevent lifting of the insulation. All raw edges of the insulation shall be sealed.

Wall registers shall be of the adjustable blade type. Front set of blades are to be horizontal. Maximum blade spacing shall be 20mm.

Toilet exhaust grilles shall be of disc or eggcrate type.

Return air/relief air grilles to be eggcrate, half chevron or full chevron type.

28.21 **Piping, Valves and Fittings**

In general, chilled water, heating water and condenser water lines within buildings shall be of Type B Copper. Underground pipework shall be suitably protected copper type B and or ABS laid direct in the ground unless laid in close proximity to heating water pipework. Pipe installed underground at a depth of less than 1200mm shall be insulated type B copper pipe. Galvanised pipe or other material shall not be used unless approved by ECU’s Manager - Mechanical Services.
Chilled water and heating water underground mains are to be located under paving unless funds allow their location in culvert ducts or covered way ceilings.

Transition from one material to another should be made adjacent to the buildings in a pit which is always readily accessible. Valves shall be of approved manufacture and shall be in easily accessible positions.

Valves shall be of the type to suit the application, but generally be as scheduled below:

- **Isolation**
 - Ball valves to 40 mm diameter
 - Wafer type butterfly from 50 mm to 500 mm diameter
 - Gate valves from 300 mm diameter

- **Throttling plus Isolation**
 - Double regulating valves from 15 mm to 65 mm diameter (for bypass legs across coils at index runs only)
 - Wafer type butterfly valves from 50 mm to 300 mm diameter

- **Modulating Control Valves**
 - Belimo Pressure Independent Characterised Control Valves (PICC valves) only (with manual over-ride capability)

- **Stabilising Differential Pressure Valves (for each building only)**
 - Tour & Andersson

- **Non Return Valves**
 - Swing Check Valves

- **Gauge Cocks**
 - Ball Valves

- **Pressure / Temperature Test Points**
 - Binder Double Seal Type

Belimo Pressurised Independent Characterised Control valves with associated strainers shall be used for all water balancing and control of cooling and heating coils and the like, in lieu of the traditional double regulating valves. All valves shall be labelled and clearly identify their flow control setting. Stabilising Differential Pressure valves shall be used for all branch take off from mains serving each building to provide a second tier of automatic balancing for both the chilled water and heating water systems.

Ensure valves and fittings are adequately spaced and distanced from bends and the like, in accordance with manufacturer’s recommendations. This is particularly relevant for the installation of Pressurised Independent Characterised Control valves, throttling valves and pressure / temperature test points. Ensure that pressure / temperature test points are located across individual coils and individual control valves without bends or other fittings in between apparatuses.

All headers are to be provided with at least one spare flanged and valved connection for future use. Typically, headers should be sized for the future capacity of the plant or at least one size larger than the main distribution pipe leaving the plantroom.
Ensure layout of pipework in plantrooms does not interfere with direct route of removal of equipment within plantrooms.

Where pipes pass through floors or walls, sleeves shall be specified and filled with appropriate sealant to suit application. Provide facia plated where exposed to view.

All risers shall be provided with dirt legs and drains at the bottom. Each level of pipework shall be isolated and provided with drains at the low point of each branch and at the riser.

All bolts, studs to valves, water boxes and equipment especially exposed to wet conditions are to have threads coated in nickel anti-seize.

Any variation of valve types / applications from the above shall be notified in writing to ECU Architectural and Buildings and Services Branches of ECU prior to ordering of equipment.

Where existing chilled / heating water system is to be extended, the consultant shall check and verify the capacity of the existing piping mains and plant to ensure that they are capable of meeting current and future demands. The consultant shall advise both the Architectural Branch and the Buildings and Services Branch of ECU of the current and future system characteristics.

28.22 Insulation to Pipework

Pipework insulation to comply with the appropriate and applicable Australian Standards and Buildings Code of Australia. Insulation for valves, flanges and fittings shall be arranged for easy removal for maintenance purposes and shall be provided with hinged and clipped casings. All exposed pipework which is insulated shall be metal sheathed in plant rooms, ducts and where exposed and sisalation wrapped where concealed. Metal straps shall be provided to both metal sheathing and sisalation. Sisalation shall be continuous over all wooden insulation blocks at hangers. Blocks shall be turned from solid timber.

28.23 Underground Services

All underground services including pipe work, conduits etc. shall be laid in sand and shall be identified by laying continuous PVC marker tape not less than 300mm above the pipe. The marker tape shall be colour coded, magnetic and be printed with the identification of the contents of the pipe and/or conduits. At ends of straight lengths of pipes, provide permanent concrete or cast iron markers located at ground level.

All pits laid in paving are to be trafficable to medium standard.

All bolts, studs to valves, water boxes and equipment especially exposed to wet conditions are to have threads coated in nickel anti-seize.

28.24 Plant and Equipment

Pumps

Close coupled pumps shall not be used. 50mm suction and over shall be Ajax I.S. "Back End Pull Out Type". Under 50mm suction they shall be Ajax "Vertical Split End Type". Impellers shall be bronze; casing above 25mm: gunmetal, below 25mm: bronze; shafts shall be stainless steel. All seals shall be mechanical seals.

Motors
Shall be totally enclosed fan cooled and normally be limited to 1450 rpm maximum. Motors for variable speed to be selected for sufficient dissipation of localised motor heat when running at low speed. High efficiency motors shall be specified. Motors over 4.0 kW are to be soft start.

Fans
Where they are centrifugal fans they are to be of approved manufacture with backward curved aerofoil shaped blades.
Air flow switches are to be piped across the suction and discharge ends of fans

Variable Speed Drives
Variable Speed Drives (VSD) shall be of Danfoss, ABB or Zenner manufacture or approved equal.

Installation of VSD’s shall be in accordance with current standards as provided by Standards Australia and relevant legislation.

VSD shall have a mains supply isolation contactor installed before the VSD. The contactor shall, at all times, be sized sufficiently to allow the controlled motor to operate Direct On-line (DOL) should the VSD be removed for service. The intent is to allow conversion to DOL operation as a contingency in instances where failure of a VSD occurs and it is necessary to keep the facility in service. In such instances, temporary "soft starting" may be required where motor size does not allow DOL starting, however it is important that the isolation contactor is of sufficient size to operate in conjunction with soft starting.

Edith Cowan University’s Building Automation Systems shall control the VSD. The BMS shall provide a minimum input/output (I/O) interface to the VSD as follows:

- One Analogue Output to ramp the VSD proportionally (0 – 10 vdc)
- One Digital Output to provide Isolation Contactor Enable (24 vac)
- One Digital Input providing the BMS with VSD fault status (Dry Contacts)

DDC control wiring shall be such that the VSD can be enabled/disabled via a “Manual/Off/Auto” switch located on the Mechanical Services switchboard. The VSD can be further controlled on the VSD by use of local control functionality.

The DDC enable input on the VSD shall be provided with a “bridge” (where required) to give a permanent enable on the VSD.

The DCC enable signal shall not be removed until after the analogue output signal to the VSD is equal to or less than a value of 0% and a minimum time has elapsed that is equal to or greater than the ramp down time as set on the VSD plus 15 seconds.

Should the VSD experience a fault condition, the VSD diagnostic display shall be retained so that it can be interrogated for fault finding purposes.
Roof Mounted Exhaust Fans
Roof mounted exhaust fans shall be direct drive type and utilise speed controllers or variable speed drives as required depending on the fan motor size. The use of belt driven fans is not the preferred option. If a belt driven fan is proposed, then it shall be subject to approval by ECU.

Fume Cupboards Flues
Roof mounted PVC fume cupboards flues to be fitted with bird spikes to prevent the birds from entering the flues.

Heater Banks
Heater banks may be electric but only to be used where other alternatives are cost prohibitive. Utilise pulse width modulation for the staging of the heater banks as described under Controls.

Filters
Shall be SW Hart, Email or other approved equal and conform to the minimum filter efficiencies as outlined in AS 1668 Part 2 and as a minimum, achieve 20% efficiency using Dust Test No 1 as per AS1132.5. The following is a guide to the type of filters to be specified:

- Air handling plant above 3,000 L/s: Pyracube, Four Peak or deep bed type
- Air handling plant under 3,000 L/s: V- Form extended media throwaway type
- Grease filters: Email type GW

Dry media filters shall be of the disposable type.

Outside air intakes for large air handling systems shall be provided with pre-filters located behind the plant room air intake grille. Prefilters shall be of Email SP panel type filter with KO type media or approved equivalent, to achieve a minimum of 75 % efficiency at AS1132 Dust Test No 4.

Magnahelic gauges shall be provided to sense filter bank pressure drop. Engraved labels secured adjacent to magnahelic gauges shall state the pressure at which filters shall be cleaned/replaced.

VAV Boxes
VAV boxes shall be Celmec, Johnson or approved equivalent. Depending on the design, variable volume boxes utilising a single primary air system is preferred. Subject to justification to and approval by ECU, the use of series or parallel type fan assisted VAV boxes may be considered. Where fan assisted VAV boxes are utilised, they shall incorporate a fan air flow or pressure switch which shall be suitable for low air pressure at minimum airflow. The airflow / pressure switch shall be interlocked with any electric trim duct heaters.

The size of each VAV box shall be selected to suit the design minimum / maximum airflows and control ranges of the box, in accordance with manufacturers recommendations. Test certificates indicating performance testing and QAQC checks shall be included in the Operating & Maintenance Manuals.

Chiller Sets
Existing chillers are of York, Trane or Luke manufacture. Water cooled helical screw type chillers are the preferred option. Requirements other than water cooled helical screw require clearance by the University Project Manager and Buildings and Services Branch of ECU.
Additional chillers should be compatible. Where practical, chillers are preferred to be low speed multi-stage type with no gear box.

Chiller condenser vessel tubesheets shall preferably be constructed from stainless steel. Where mild steel tubesheets are supplied with new chillers, the tubesheet shall be treated with a protective coating such as “Corocote” or like epoxy coating. Cathodic protection shall be provided with the application of sacrificial anodes in condenser end caps as a minimum along with “Best Practice” application of anti-corrosion water inhibitor treatment.

Treatment of tubesheets and cathodic protection type, along with maintenance requirements, shall be documented in plant “Operation and Maintenance Manuals”.

Chiller ancillary electrical components such as contactors, contact sets, coils and relays etc., shall be freely available “off the shelf” in Australia. In turn, power and control circuit voltage must be of a standard that allows the procurement of “off the shelf” replacement component parts within Australia.

Chillers shall incorporate control modules, such as BacNet, that allow chiller plant management and monitoring. Control functions shall include chilled water reset, chilled water throttling valve control, chilled water bypass control and condenser water reset and / or condenser water throttling valve / bypass valve control.

Where BacNet or other high level interface is provided, the control system shall be configured to:
- Monitor refrigerant temperatures and pressures
- Monitor % compressor loading
- Monitor compressor Amps and run times
- Allow variation of % load limit
- Identify low level and high level alarms such that on failure of one compressor, the compressor is rotated to lag position, allowing the chiller to continue operation until a major fault isolates that chiller.

Chiller enable, chilled water reset and any other critical command from the BMCS to the chiller shall be hard wired, all BACnet or HLI is to be utilised for monitoring only. The cooling capacity selected for the chiller shall take into account the staging capacity of the chiller plant to ensure a sequential and lineal grade of capacity increase and decrease. The make and model of the chiller/s to be specified shall take into account COP’s at part load, varying chilled water supply temperatures and varying condenser water temperatures. Life cycle costing of operating and maintenance profiles over 20 years shall be forwarded to ECU for verification prior to the consultant issuing tender specification.

Where water cooled type chillers are to be provided, particularly helical screw type chillers, regardless if they are lead or lag, they shall incorporate condenser water throttling / control for cold condenser water starts, in accordance with manufacturer’s recommendation.

Cooling Towers

Cooling towers shall be constructed of fibreglass or non-corrosive material and be in accordance with AS3666. Cooling tower sumps and condenser water take-off pipe assemblies shall be of fibreglass or non-corrosive material and shall be completely free draining. That is, build-up of sediment as a result of general maintenance and cleaning of towers, cannot occur. Cooling tower construction shall allow all wet surfaces to be exposed to chemicals associated with water treatment at all times. Cooling tower construction shall not allow the development of bio-film barriers that will affect water treatment effectiveness. Where new cooling towers are provided they shall incorporate an automatic type flushing system to the approval of ECU.
Water treatment of condenser cooling water systems shall be in accordance with AS3666 and shall further provide the following as a minimum:

- Monthly Legionella testing;
- Automatic dosing of chemicals associated with protection against corrosion;
- Automatic dosing of biocides associated with microbial control. Additionally, automatic dosing shall be setup to provide for rotation of biocides. Biocide chemicals shall be injected into the condenser water entering side of chiller condensers. All condensers, pipework and cooling tower wetted surfaces shall be treated by biocides including potential “dead-legs” such as condenser by pass pipework;
- Where a BMS is available within a condenser water system plantroom, automatic time scheduling of biocide dosing shall be achieved via the BMS.

The selection of a cooling tower shall be undertaken in conjunction with the selection of the associated chiller to ensure COP’s at design and part load conditions are achieved. Cooling tower fans should incorporate variable speed drives, suitably controlled to maintain design condenser water temperature to each cooling tower basin.

Cooling towers shall be of B.A.C. (Baltimore Aircoil) manufacture or approved equal. Disposal of cooling tower waste water is to be to approval of ECU. ECU sustainability objectives require the consideration of reuse of waste water. The option of discharge to sewer as trade waste must be maintained.

Air Cooled Condensers
Where air cooled condensers are proposed, they should preferably be of the vertical air flow type with air drawing through the coil.

Pressure Vessels
All equipment supplied to the University that contains pressure vessels shall be registered in accordance with relevant Australian Standards, legislation and Worksafe WA.

In addition to statutory requirements, copies of registration certificates and inspection reports/datasheets shall be included in “Operation and Maintenance” manuals with a separate copy issued to ECU’s Manager - Mechanical Services.

Examples of equipment that contain pressure vessels that may be required to be registered include, but are not limited to the following:

- Chillers – evaporator and condenser vessels;
- Boilers;
- Air compressors; and
- Vacuum systems.

Inspection, certification and maintenance requirements of pressure vessel shall be detailed in “Operation and Maintenance” manuals.

All Belt Driven Equipment
All installations utilising exhaust fans shall be direct drive. Where installations have no option but to require belt drive means, the installation shall have a minimum of two vee belts and pulleys shall be equivalent to Taperlock.

Air Handling Plant
Refer filters, motors and fans under items 11.15 and 11.22. Air handling plant associated with variable air volume boxes shall incorporate variable speed drives to control supply air fan speed to suit static pressure set point.
Coil velocity shall be limited to:
- 2.2 m/s - cooling
- 3.0 m/s - heating

The use of return / relief air fans should be avoided if possible, depending on the configuration of the air handling plant and air distribution system. The use of return / relief air fans limits the use of economy cycle in trying to modulate to achieve leaving air temperature set point. The use of dissimilar return / relief and supply air fans, as in centrifugal and axial type fans, is also discouraged due to the different pressure / airflow performances of the fans, particularly on variable air volume systems where both fans incorporate variable speed drives.

Air handling units shall incorporate a motorised minimum outside air damper which shall close on warm up cycle. Economy cycle damper which could also be utilised in night purge control routine should also be provided where appropriate.

All sensors and relief dampers locations are to clearly shown on the Building Management and Control systems (BMCS) graphics.

All related DDC points on a related system must be located on the same physical controller e.g. a heating water system differential pressure must be on the same controller as the heating water bypass valve.

Heating Water Boilers
Shall be forced draught type.

Evaporative Coolers
Shall be constructed of aluminium similar to "Bonaire" or approved equivalent.

Plantroom Floor Waste Charging System
A solenoid valve to be provided to charge the plantroom floor wastes. These solenoid valves are to be controlled to come on once a week by the Building Management System.

28.25 **Instruments**
All instruments shall be calibrated to read in the S.I. system of units. Dial gauges shall be 100mm minimum diameter and shall be installed to allow the gauge to be zeroed when not in use. The range of the instrument shall be suitable for the application i.e. normal operating point equal to 80% of full scale deflection.

28.26 **Air Conditioning Electrical System**
Switchboards and Motor Control Centres shall normally be of type tested construction.

Permanent, clearly legible traffolyte labels shall be fixed to all internal and external controls.

Fire Alarm relays shall be provided in accordance with the requirements of AS 1668 and AS 1670 as applicable.

A minimum of 25% spare capacity shall be provided in all Switchboards, Sub-boards and Control Panels to allow for future extension. High and low voltage cable and controls (DDC) shall be separated within cubicles in accordance with AS 3000.

A minimum of three (3) fuses of each size and type shall be specified as spares and shall be secured in holding clips on the inside of Switchboard Cubicle Doors.
Hours run meters shall be provided on all items of equipment which are duplicated or run in parallel, and where else considered necessary, unless controlled by a direct digital control system, in which case the control system shall record operating hours. Strategy for measuring and tracking energy use by mechanical services systems will require greater detail.

Provision shall be made to override local start-stop controls by means of BMS control where specified.

Polyphase Kilowatt-Hour Meters shall be provided to main A/C Switchboards to meter the consumption of the switchboard and all its sub-boards. Where sub-metering of mechanical service switchboards is being picked up under the Electrical Services element, this requirement is not applicable.

All cables shall be run on a cable tray and terminated strips. Cables shall be identified by numbered ferrules at each termination.

Heater banks shall be controlled by BMS, irrespective of air-conditioning controls, for energy load shedding.

Heater protection thermostats complete with fault lights (visible from within the occupied space) shall be provided to all heaters including those associated with VAV boxes. Air flow switches shall be incorporated in all heated air systems.

Electrical drawings shall be prepared with Circuit Reference Numbers to indicate the number of contacts and their location.

28.27 Identification of Equipment

All items of equipment shall be identified with engraved trefelite labels, in accordance with the University’s Computerised Maintenance Management System QFM Coding structure. Contact the Buildings and Services Branch for details. Thermometer bulbs, pressure gauge tapings and remote sensing points shall be labelled to indicate their function.

28.28 Identification of Pipework

All pipes shall be identified in accordance with AS 1345 - 1972 for the Identification of Piping, Conduits and Ducts and AS 1318, Industrial Accident Prevention Signs. "Safetyman" adhesive labels are an acceptable method for identification of pipework. Flow direction arrows shall be provided to all pipework. All exposed pipework in plant rooms and risers and wherever else exposed to view shall be fully painted in accordance with the University’s "Colour Schedule for Plant and Equipment” (Section 24.0). Colours standards shall be in accordance with AS 2700.

28.29 Future Air Conditioning

All buildings are to be designed to have sufficient capacity to allow for extension or expansion of the air conditioning systems with in the building design for future buildings proposed for the site. The designer should reference the master plan and discuss the options with ECU to consolidate the design intent. All chilled water and heating pipe systems to each building shall, as a minimum, be designed to have 20% spare capacity throughout.

28.30 Building Management System (BMS)

The University’s buildings are controlled and monitored through an Andover Continuum or TAC INET system with Schneider Struxureware Building Operation located in the Maintenance office.
with Data Gathering Panels (DGPs) in each building. The Contract shall allow for the supply and installation of a system in the building connected back to the CPU by the University’s ethernet communications network and to any relevant points in the building to be determined in conjunction with the University. The new Building Management and Control Systems (BMCS) shall be Schneider Struxureware Building Operation.

Interconnection between DGPs within the building and between buildings shall be DEKORON cable 1.5mm², twin, terminated through a lightning protector at the DGP.

Power to the DGPs shall be 240V/24V with capacity to operate the maximum relays controlled by the DGP. All controls emanating from the DGP to external devices shall be 24V A.C. originating from a 240V/24V transformer mounted within the DGP cabinet or in external switchboards and switched by the internal relays within the DGPs.

Relays shall be IZUMI, RY4S, and 24V D.C. Typical control drawings are available from Asset Planning Branch.

Programming of system shall be part of the contract and group point numbering shall be determined in conjunction with ECU’s Buildings and Services Branch. Provision for system graphics to also be included in accordance with current methodology.

The BMCS contractor to provide the University with all the details of the controls network devices including MAC addresses. The University will issue the IP addresses for these devices.

All the BMCS and Mechanical services switchboards to have 25% spare capacity for future expansion, the spare capacity shall include but limited to Hardware, software and spare DDC points capability.

The contract shall provide for not less than eight hours instruction on the system operation and programming (depending on size of project) to staff of University. Allow for maintenance period to cover cost of call outs and maintenance for 12 months.

28.31 Air Conditioning Controls – General

(i) Refrigeration plant shall be fully automatic and shall normally respond to a call for cooling from the air-handling unit.

(ii) Local exhaust fans (other than toilet exhaust) shall be provided with local manual controls.

(iii) External and/or remote temperature and pressure sensors and recorders should be specified on any installation of 100 kW or over.

(iv) Provision should be made on all controls and sensors for connection to a Central Control and Monitoring System (BMS) – Schneider Struxureware Building Operation.

(v) Control and monitoring systems for air-conditioning plant shall be determined in consultation with staff of ECU’s Buildings and Services Branch prior to finalisation of specification.

28.32 Air Conditioning Control Functionality

Occupied (Master) Setpoint
Occupied Setpoint is an internal numeric point which floats over a temperature range of 22.5°C to 23°C and is established once on each air handling/fan coil unit. The Occupied Setpoint represents the room or space temperature setpoint under active push button control. The floating Occupied Setpoint is reset according to ambient temperature in accordance with the following parameters:

- If the ambient temperature is below 17°C then OSP = 22.5°C
- If the ambient temperature is above 25°C then OSP = 23.0°C
- When the ambient temperature is between 17°C and 25°C, OSP will be proportional between 22.5°C and 23°C
Table 8

<table>
<thead>
<tr>
<th>Mode</th>
<th>Set-point</th>
</tr>
</thead>
<tbody>
<tr>
<td>Occupied Set-Point</td>
<td>22.5°C</td>
</tr>
<tr>
<td>Setback Cool Mode</td>
<td>OSP + 2°C</td>
</tr>
<tr>
<td>Setback Heat Mode</td>
<td>OSP – 2°C</td>
</tr>
</tbody>
</table>

Where a globalised campus Master (Occupied) Setpoint is already established providing alternative functionality relating to previous approaches in control strategy, the above approach will take precedence. To this end, the control strategy shall be updated to reflect current control requirements.

Air Conditioning Run Times

Air conditioning systems shall be time scheduled to operate in core hours. Core hours for the purpose of air conditioning run times is from 8:00am to 5:30pm Monday to Friday.

Once air conditioning units start in core hours, systems shall operate in a “setback mode”. Setback shall be in accordance with the following parameters:

\[
\text{Setback cool mode} = \text{OSP} + 1.5^\circ C = \text{SBCSP}
\]

\[
\text{Setback heat mode} = \text{OSP} - 2.5^\circ C = \text{SBHSP}
\]

Upon the occupant activating an A/C push button, the active zone shall revert to “occupied mode”. “Occupied mode” shall provide system control to Occupied Setpoint. In core hours, occupied mode shall be for a duration of four (4) hours. Outside of core hours, an initial activation of the A/C push button shall start the air conditioning system with the active zone operating in “occupied mode” while inactive zones operate in “setback mode”. Out of hours run time is for a duration of two (2) hours.

A/C push button control stations shall utilise a “rocker” style switch (not depression type as used previously) and shall incorporate a green neon indicator light that provides the occupant with an indication of air conditioning status and that the zone is active. All inactive zones shall remain in “setback mode”. The push button control logic shall be set up where the push button has to be depressed for a period of not longer than 3 seconds to enable occupied mode. A further 30 seconds needs to elapse before the push button can be depressed for a period of not longer than 3 seconds to enable setback mode in core hours and turn the AHU/FCU off in an “out of hours” condition.

Where there is a group of staff studies, the A/C push button control station shall be located most conveniently in the main access way at 900mm above floor level. Where tutorials or classrooms are encountered, separate push button control stations for each area located adjacent to the light switch shall be provided.

Some areas, such as Auditoriums, Theatres and the like, do not operate on core hours. The air conditioning plant is initiated when the push button is activated and then controls as required to achieve OSP. However, if the area is not occupied and the room temperature exceeds 28.0 \(^\circ C\) or is lower than 19.0 \(^\circ C\), then the air conditioning plant shall start automatically and run until the room temperature falls below 26.0 \(^\circ C\) or rises above 20.0 \(^\circ C\).

There is existing air handling plant that, due to their configuration, does not follow the above control logic to the letter. In the event that there are modifications to an existing air handling or distribution system, the designer shall identify the control logic employed and modify as
required, subject to ECU approval, in order to provide a plant that operates effectively and is energy efficient. The control logic finally employed should be similar in intent to the design intent of the control logic described herein.

Room Sensing
Normal location of sensors for room temperature sensing shall be:
- For perimeter zones, 1500 – 2000 mm from the outside wall, 1500mm to 1700mm above the floor, out of direct sunlight and adjacent return air path if possible
- For internal zones, 1500mm to 1700mm above the floor and adjacent return air path

VAV Operation
VAV operation shall be in accordance with control functionality for occupied and setback modes as outlined under section titled “Air Conditioning Run Times”. This means that only the VAV in the activated push button area is to commence full control function - all other VAV’s are to remain in setback mode as indicated.

Where more than one VAV Box service a common area a common push button is to be installed and programmed to start all the VAV Boxes serving that area.

VAV electric re-heat shall be enabled and allowed to operate to maintain OSP or SBSP whenever the following calculation below is true.

\[
SAF = \begin{cases} \text{On} & \text{if } SAT < RAT \\ \text{On} & \text{if } RT < OSP \text{ or SBOSP} \end{cases}
\]

where
- SAF = Supply Air Fan
- SAT = Supply Air Temperature
- RAT = Return Air Temperature
- RT = Room Temperature
- OSP = Occupied Set Point for occupied
- SBSP = Set Back Set Point for unoccupied mode

Note:
Refer to item (v) in Warm Up Section under the heading of “Note” for VAV operation during warm-up mode.

VAV heater banks shall have a mains power supply isolation contactor located in the air conditioning unit plantroom mechanical services switchboard that is energised based on fan status that is derived from an air flow switch located in the supply air duct.

VAV heater bank trip indication shall be by way of monitoring a hardwired status point typically associated with the heater isolation contactor/relay and is to be displayed on the BMS graphic page for VAV boxes.

Economy Cycle Operation

AHU start up
On AHU start-up hold chilled and heating water valves closed for 2 minutes. Check for viability of economy by
- OA < RA and SA > SA_SP and Enthalpy < 48 for economy cool
- OA > RA and SA < SA_SP for economy heat

If economy is viable modulate economy dampers to control supply air temperature to supply air temperature set point. (Hold chilled and heating water valves closed)
If on economy cool
Where economy dampers = 100% and SA > SA_SP for a period greater than 2 minutes, then modulate CHWV to maintain supply air temperature. (Economy not able to meet demand)

If OA > RA or Enthalpy > 52 then close economy dampers. Modulate the Chilled Water Valves to maintain supply air temperature. (Economy is no longer viable).
While AHU is running when no economy is in use, check for cooling economy viability by OA < RA and Enthalpy < 48 for economy cool. Where this is true, open economy dampers to 100%. Continue to modulate CHWV until valve = 0%. Then modulate economy to maintain supply air temperature.

If on economy heat
Where economy dampers = 100% and SA < SA_SP for a period greater than 2 minutes, then modulate HWV to maintain supply air temperature. (Economy not able to meet demand)

If OA < RA then close economy dampers. Modulate Heating Water Valves to maintain supply air temperature. (Economy no longer viable).
While AHU is running when no economy is in use, check for heating economy viability by OA > RA for economy heat. Where this is true, Open economy dampers to 100%. Continue to modulate HWV until valve = 0%. Then modulate economy to maintain supply air temperature.

Variables
Where SA temperature is not used replace SA and SA_SP with chilled and heating water control points (e.g. Room temperature and room temperature set point)

Where OA > SA_SP -0.5 and OA < SA_SP +0.5 and Enthalpy < 48 then Economy = 100% (OA is very close to SA_SP so economy is used to provide 100% fresh air).

OA = outside air temperature
RA = return air temperature
SA = supply air temperature
SA_SP = supply air temperature set point
CHWV = chilled water valve
HWV = heating water valve

Note: Enthalpy is not used for heating

Night Purge
Night purge shall be incorporated and initiated when:
The air handling system incorporates an economy cycle and does not operate 24 hours a day
The average space temperature for all zones exceeds 24.0 °C
Outside air temperature less than 22.0 °C
Outside air enthalpy less than 52 kj/kg
Time of day between midnight and core hours start time

Night purge shall be terminated on commencement of core hours of operation, when outside air temperature greater than return air temperature or outside air enthalpy exceeds 52 kj/kg. During night purge operations, all VAV boxes shall open to 100% design airflow until OSP + 2.0°C is achieved, whereupon the night purge cycle shall terminate

Early Morning Warm Up Operation
Initiation
Warm up cycle will not be initiated unless the average room temperature is less than 20.0°C, outside air temperature is less than 14.0°C and time of day is less than two hours before core hours (i.e. Monday to Friday). This is illustrated in the following equation.

\[(\text{ART} < 20^\circ\text{C}) \& (\text{OAT} < 14^\circ\text{C}) \& (\text{TOD} = \text{Core Hours Start} < 2 \text{ hours})\]

where:
- ART = Average Room Temperature
- SAF = Supply Air Fan
- OAT = Outside Air Temperature
- TOD = Time of Day

The warm up cycle shall be enabled two hours before core hours commences, subject to operating parameters being met. When the warm up cycle is enabled the heating water valve will modulate to maintain a supply air temperature of 35.0°C. This will be held until the average of all room temperatures is equal to OSP – 1.0°C or Core Hours commence.

i.e. cold morning \(\text{OSP} = 22.5^\circ\text{C} - 1.0^\circ\text{C} = 21.5^\circ\text{C}\)

Note:

(i) 22.5°C – 1.0°C is needed to overcome building inertia. This control logic is aimed at being both energy efficient (i.e. not overheating the space) and mindful of reducing operating costs (i.e. minimising the need for electricity consumption during on-peak periods) as the central heating is typically a gas boiler with no on peak periods, it is prudent to maintain the operation of the warm up cycle until specified conditions are achieved. Variation of parameters for activation and termination of warm up cycle may be required to suit building characteristics and plant performances over varying ambient conditions.

(ii) The economy cycle will need to de-energise while warm up is in operation.

(iii) The minimum outside air will need to be closed off and in the case of air quality control, will need to be overridden so as to move to its closed position.

(iv) During warm up, an AHU localised point will be recognised by each VAV so that the VAV will drive to its maximum design volume (i.e. reverse acting mode) and also lock out any VAV re-heat.

The duration of the warm up cycle is nominal only.

(vi) After the warm up cycle has terminated, a period of 15 minutes (variable) air circulation is required before ECU standard mechanical services control is enabled. The air handling unit shall continue to operate until core hours of operation are initiated however, the minimum outside air damper would open to preset (normal open) position, the VAV boxes would return to normal control of airflow and the leaving supply air temperature would be reset to normal operation. The outside air economy dampers would be held closed 100%

(vii) In the event that the warm up cycle is terminated prior to 7.30 AM, the air handling unit shall be switched off until either the parameters for warm up cycle allow it to be enabled or core hours of operation were reached.

(viii) Ensure that the warm up cycle utilises the gas boilers and central heating water systems in lieu of electric reheat.
Consideration should also be given to day warm up cycle routines where the building or air handling systems experience a cold thermal change during the day.

The warm up sequence is illustrated below in Figure 8:

Figure 8

WARM-UP
- Econ = Return air
- VAV = Max Volume
- VAV Reheat = Nil

AIR CIRCULATION
- Econ = Return
- VAV = Automatic Mode

NORMAL MODE
- ECU Standard Mechanical Services Control
 (refer section 21.32 (vi))

Day Warm Up Operation

The day warm up cycle is enabled from the following parameters:

<table>
<thead>
<tr>
<th>Enabled</th>
<th>Disabled</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Room Temperature $< OSP - 1.5^\circ$K or All AHU VAV heater positions $>50%$</td>
<td>Average room temperature $> OSP - 1.0^\circ$K Outside core hours (0800 – 1730)</td>
</tr>
<tr>
<td>Core hours (0800 – 1730)</td>
<td>Monday to Friday</td>
</tr>
<tr>
<td>Days of week is Monday to Friday</td>
<td></td>
</tr>
</tbody>
</table>

Whilst the day time warm up cycle is enabled, the operation of the VAV boxes is then reversed such that it will control to maximum air volume as the temperature in the room falls below the heating set point and will control to minimum air volume as the room temperature rises above the heating set point.
Once warm up cycle is disabled a period of 15 minutes is elapsed to allow for the air circulation. During the air circulation cycle the supply air temperature resumes normal control, the economy cycle dampers remain in full return air mode, the minimum outside air dampers operate and VAV boxes operate as below:

AHU Static Pressure Control

Air handling unit air volume will be controlled by sensing system static air pressure with the sensor located at a distance 60% downstream of the AHU in the supply air duct index leg. The static pressure sensors locations are to be shown on the Building Management and Control System Graphics, sensors must be located in locations that can be accessed for future maintenance. (Variations to this will need special arrangement through ECU Buildings and Services Branch). The static air pressure will be maintained by modulating a variable speed drive controlling the AHU supply air fan motor speed.

The static pressure set point shall be determined in conjunction with the consultant and the commissioning personnel such that the static pressure set point shall be measured at simulated diversified airflow for the air distribution system.

Chilled and Heating water pressure transducers shall be provided with isolation and bypass valves, binder points to be installed in close proximity to the transducers to allow commissioning, calibration, replacement and zeroing of the transducer.

AHU Zone Control (Face & Bypass)

Face / Bypass control achieved by taking the highest average value of any space temperature sensor on that zone and comparing to OSP for each zone sensor to determine set point deviation.
Supply Air Temperature Cooling and Heating Reset

The chilled and heating water valves will be modulated to maintain supply air temperature sensed by a supply air temperature sensor according to the reset schedule as illustrated in Figure 12. Room error referred to in Figure 12 is obtained by utilising the highest average of zone temperatures compared to the master set point (or room set point) in occupied mode or the “setback mode” set point when no zones are active. If operating in the unoccupied mode and the afterhour’s push button was activated for one or more VAV boxes or areas, then the highest average room error would be calculated using only the activated VAV boxes or areas, with the unoccupied areas excluded from the calculation.

An example of the calculation of the highest average is provided as follows:

<table>
<thead>
<tr>
<th>VAV No</th>
<th>SP</th>
<th>Actual Temp</th>
<th>Occupied / Unoccupied</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>23.0</td>
<td>23.8</td>
<td>Occupied</td>
</tr>
<tr>
<td>1.2</td>
<td>23.3</td>
<td>25.0</td>
<td>Occupied</td>
</tr>
<tr>
<td>1.3</td>
<td>23.0</td>
<td>25.5</td>
<td>Unoccupied</td>
</tr>
<tr>
<td>1.4</td>
<td>23.0</td>
<td>23.7</td>
<td>Occupied</td>
</tr>
</tbody>
</table>

Calculated Average Room Error = (0.8+1.7+0.7)/3 = 1.06°C
Calculated Highest Average Room Error = (1.7+1.06)/2 = 1.38°C
A
OUTSIDE AIR TEMP

<table>
<thead>
<tr>
<th>Room Error (OSP or SBSP)</th>
<th>Supply Air Reset</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4.5</td>
<td>15</td>
</tr>
<tr>
<td>0</td>
<td>22.5</td>
</tr>
<tr>
<td>1.5</td>
<td>30</td>
</tr>
<tr>
<td>-8.0</td>
<td>-4.5</td>
</tr>
</tbody>
</table>

B
SUPPLY AIR RESET = 22.5 + (A + B)

Toilet Exhaust Control
Toilet exhaust fan will operate during core hours plus 1 hour or whenever toilet zoned AHU is running plus one hour. The duty / standby fans shall be step start controlled based on accumulated run hours for each fan.

Chiller Control
Interface and Reset
The chiller selected by ECU will have either an electronic control panel or a full direct digital control panel.

Electronic Control Panel
Control interface to Edith Cowan University’s Building Management System where an electronic control panel is used will be as indicated in Figure 13.

Figure 13

<table>
<thead>
<tr>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digital Start / Stop</td>
<td></td>
</tr>
<tr>
<td>Chw Reset (0-10v)</td>
<td></td>
</tr>
<tr>
<td>Chiller Electronic Control Panel</td>
<td></td>
</tr>
<tr>
<td>Fault (on/off)</td>
<td></td>
</tr>
</tbody>
</table>
Direct Digital Control Panel
Control interface to ECU’s Building Management System where a direct digital control system is used will be as indicated in Figure 14.

![Chiller DDC Panel](image)

Building Management System

Chilled Water Control
Chilled Water Temperature Reset
The chilled water system is to be provided with setpoint reset according to the schedule in Figure 15.

![O.A.T.](image)

Chilled Water Temperature Setpoint
The staging up of the chillers on return chilled water temperature shall have the staging set points offset to match the variation in leaving chilled water temperature setpoint such that, for example, set points of 7.0 °C / 14.0 °C would change to 10.0 °C / 17.0 °C.

Condenser Water Reset
Provide condenser water temperature reset for screw type chillers based on the following parameters:

![Outside Air Temperature](image)

Condenser Water Supply Temperature
Chilled Water Set Point
Condenser Water Supply Temperature

Use highest of the two values above.

Screw chillers shall incorporate condenser water flow control, either via the use of throttling valves or variable speed pump operating controlled by refrigerant differential pressure sensor, in accordance with manufacturer’s recommendations.

Reciprocating chiller sets shall incorporate condenser water bypass in accordance with manufacturer’s recommendations. Unless centrifugal chillers are to be utilised for lead start, these chillers would not require condenser water throttling control. However, where a chiller plant has more than 2 chillers, and depending of the configuration of the condenser water pipework, condenser water throttling valves or automatic regulating valves may be necessary to limit excess condenser water flow through each vessel.

In resetting condenser water supply temperature set point, the operation and staging of the cooling tower / fans must follow suit. Utilise free cooling across all cooling towers where possible.

Chilled Water Differential Pressure Control

Where a de-coupled chilled water system is in use, the chilled water system differential pressure will be maintained by a variable speed drive attached to the secondary chilled water pump. The variable speed drive will respond to variations in system pressure as read by a differential pressure transmitter. The transmitter is to be installed at a point approximately 60% downstream of the chilled water pump in the index leg of the chilled water system.

Where the system is not de-coupled, chilled water system differential pressure will be maintained by a bypass valve which will respond to variations in system pressure as read by a differential pressure transmitter across the chiller vessel. The transmitter shall measure differential pressure across the chiller to ensure minimum chilled water flow rates are maintained while providing full flow out into the field as required.

With respect to the Joondalup campus, the operating pressure and pressure range for valves to the expansion tank and system differential pressure have been set against the Science and Health Building No 19, which represent the index leg of the system, including the static head exerted on the system.

For all new projects on Joondalup Campus, it is important that the engineer checks and ensures that the static head of new buildings does not exceed that of the Science and Health Building. This will generally be achieved by locating chilled water plant on levels below the Science and Health plant room levels. In the event the levels of Science and Health Building plant are exceeded the engineer is to check and calculate all system pressures which may then require some adjustments to be made to the pressure settings relevant to the thermal storage system and expansion tank in the central plant room.

Heating Water Control

Heating Water Temperature Reset

The heating water system is to be provided with setpoint reset according to the schedule in Figure 17.
Heating Water Temperature Setpoint
Heating Water Differential Pressure Control
The heating water system will have a Bypass Valve that is to maintain the boiler water temperature as illustrated in Figure 18.

Bypass Valve Position
The boiler operation shall be interlocked with a heating water flow switch, to be located on the leaving water side of the boiler, suitably calibrated to de-ergise the boiler at minimum flow rate.

Heating Water over Pressurisation
The bypass valve will be programmed to open in accordance with the schedule illustrated in Figure 19, should over pressurisation of the system occur.
28.33 **Load Shedding**

Where load shedding control sequences are utilised, they shall be incorporated where site maximum demand is monitored. Load shedding shall have the following priorities:

- Increase of chilled water supply temperature from 7.0 °C to 8.0 °C
- Increase in OSP and SBSP by 1.0 °C
- Isolation of operation of all electric duct heaters

28.34 **Energy Management**

At preliminary design stage, subject to the extent of works to be carried out, but where new plant is proposed to be installed, and as part of the life cycle costing of the selected plant, the consultant shall advise the ECU Project Manager Buildings of the estimated energy consumption profiles over a 12 month period and the energy modelling scenarios. The consultant is to identify, nominate and / or investigate all scenarios for limiting energy consumption and greenhouse gas emissions.

The consultant shall be responsible for monitoring the operation and control of the air conditioning plant for a period of 24 months after practical completion. This work shall form part of the consultants brief for the design and documentation of the project. This shall include regular site visits or remote dial in to the site to observe operation and performance of plant, make modifications to the control logic of the plant and equipment to improve efficiency and reduce operating costs. The consultant shall instruct the contractor to make all necessary changes at no cost to ECU, as required to achieve efficient operation of the plant. The consultant shall submit energy consumption profiles and sign off on the operation and control of the plant and equipment every 3 months, to the approval of ECU.

The consultant shall also specify energy monitoring equipment to be provided for all forms of energy consumed for the building. This shall be achieved via monitoring points on the digital control system. This shall include, but not be limited to:

- Ambient temperature
- Chilled water consumption (entering water temperature, leaving water temperature, chilled water flow rate)
- Heating water consumption (entering water temperature, leaving water temperature, heating water flow rate)
- Gas consumption
- Electricity consumption
- Hot water consumption
- Energy consumption / production from miscellaneous sources such as bore water, geothermal, solar hot water, wind, photovoltaic, etc.

The consultant shall specify all necessary metering equipment necessary to develop an energy consumption profile for each building. Where the control logic or equipment parameters have been altered, the consultant shall ensure that the Operating and Maintenance Manuals are upgraded accordingly.

28.35 **Gas Meters/BMS Connection**

All wiring connected to all gas meters to be installed as per Standards Association of Australia requirements for electrical circuits in a Zone 2 environment. Protection is required to enable the circuits to be rated intrinsically safe.
28.36 **Practical Completion**

The consultant is encouraged to discuss the design and development of the mechanical services and the selection of equipment with ECU’s Manager – Mechanical Services, at an early stage of the project to ensure that the systems proposed meet with ECU approval.

Prior to issuing out to tender, the consultant shall issue to ECU’s Manager – Mechanical Services, one set of preliminary tender drawings and specifications for review and comment.

At practical completion, the consultant shall forward all commissioning data to ECU’s Manager – Mechanical Service, for approval. The consultant shall also co-ordinate the defects inspection to be carried out with a representative of the consultant, the contractor, ECU’s Project Manager and ECU’s Buildings and Services Branch.

28.37 **Defects Warranty Period**

The consultant and contractor shall ensure that all new plant and equipment is serviced monthly for a period of 12 months after practical completion and that maintenance service sheets for all items of equipment are reviewed by the consultant before being forwarded to ECU for their verification.

At the end of the 12 months defects warranty period, a final inspection shall be carried out by the consultant, contractor, ECU’s Manager, Mechanical Services and ECU representatives. A copy of all service sheets shall be forwarded to the ECU’s Manager, Mechanical Services for their records.

After the defects warranty period, the consultant will continue monitoring the operation and performance of the air conditioning plant and initiate improvements and modification as required up to the end of the 24-month energy-reporting period that commences from practical completion, to the approval of ECU’s Project Manager. ECU’s Manager, Mechanical Services shall also be advised of any changes to the operation of the plant and equipment and the Operating & Maintenance manuals shall be upgraded accordingly, on a regular basis.

28.38 **Operating & Maintenance Manuals**

The Consultant shall ensure that one complete set of Operating & Maintenance Manuals are checked, complete and approved by the consultant before being forwarded on to ECU for acceptance. Upon approval and subject to changes identified by the consultant and ECU, The consultant shall ensure that 2 off full and complete sets of operating and maintenance manuals are forwarded to ECU, for their records. We will require one electronic copy

The Operating & Maintenance manuals for mechanical services shall:

- Be a three ringed binder, navy blue in colour and A4 in size
- Consist of one or more binders as required to accommodate all the information on the project services
- Identify the Campus, building name and number on the binding and front cover with lettering being in gold leaf lettering. The layout of the titles and headings for the manuals shall be obtained from the Architectural Branch of ECU.
- Identify the Builder, Architect, Consultant & mechanical contractor
- Identify the date of Practical Completion
- Incorporate a description of the works undertaken, description of operation, equipment schedules, functional description of the control system including flow diagrams and point schedules, manufacturers data, commissioning data, maintenance procedures, fire testing procedures and as constructed drawings
- The control system documents may be provided in a separate volume to match the project manuals.
- Incorporate one set of hard copy and one electronic copy of “as constructed” drawings per set of Operating & Maintenance Manuals
- Set of As Constructed Drawings in appropriate cabinet located in main plant room.

29. **Hydraulic Services**

29.1 **Preferred Contractors**

Contractors either tendering or working on projects at Edith Cowan University must be approved by the ECU Project Manager.

29.2 **Piped Pressure Services**

(a) **General**

This section of the standards outlines the minimum requirements for the following pressure services:

- cold water;
- hot water;
- natural gas;
- Reverse Osmosis Water System
- LP Gas (liquefied petroleum gas);
- Specialist gases e.g. nitrogen, oxygen, CO\(_2\), etc.;
- compressed air;
- vacuum.

For Fire Service, refer section 27.

In general, each riser shall be fitted with isolating valves at the bottom (or top in cases of downfeeds) and each multi storey circulating stack shall be isolated at top and bottom as appropriate. Branch lines serving an outlet or groups of outlets shall be provided with isolating valves at the riser. To laboratories and ducts to ablation blocks there is to be a main isolating valve. In all cases, isolating valves shall be readily accessible in ducts or valve boxes. For water supplies, compressed air and natural gas, ring main distribution systems should be used wherever possible and these rings should be broken down into minimum of three sections per ring by clearly marked isolating valves in the ring system. In the case where a building is supplied by a ring main, then the main shall be capable of being isolated on either side of the tee-off position. Isolation valves are to be clearly identified on As Constructed drawings, for clarity it may be necessary to include a schematic layout.

All pressure pipework shall be tested to a minimum pressure of not less than 50% above Manufacturer's design working pressure for the pipe or twice the working pressure whichever is the greater when no other relevant testing standard exists. Allow to isolate fixtures during pressure testing.

(b) **Water Supply**

Materials

Pipework. Reticulation within buildings shall be seamless tested copper tube type "B" as described in Australian Standard AS1432.

Fittings. Shall be silver soldered capillary fittings, taper/taper threaded inhibited brass fittings, flared fittings, inhibited brass fittings or flanged connections. For connections to fixtures and fittings use flared and/or brass barrel unions for up to and including 50mm diameters. Flanges to be used for sizes above 50mm diameters. Compression fittings (Kingco, Conetite, etc.) shall not be used under any circumstances. Silver solder shall contain at least 15% silver in all instances.
Valves. All valves shall be suitable for Perth water with particular regard to dezincification. Isolating valves may be dezincification inhibited bronze gate valves or stop cocks up to and including 50mm diameter. For sizes larger than 50mm diameter, flanged valves are to be used with flanges and valve body designed for the test pressure of the service. Balance valves shall be globe valves. All valves to be suitable for pressure testing of both body flanges and disc to 2100 kPa.

(Valves 80mm diameter and larger may be cast iron or steel body, bronze trimmed with DR stem.).

Butterfly valves are acceptable for isolating purposes only and are to be stud fitted (between flange models are not acceptable). Spindle to be stainless steel and seals to be rubber or plastic appropriate to fluid being transported, likewise valve discs are to be stainless steel, brass, aluminium or aluminium bronze as recommended by the valve manufacturer for fluid being transported.

Taps. Taps shall be of brass construction with jumper valves except where lever action valves are used and these are to be fitted with 90° or 180° ceramic seats. Handles shall be brass or ceramic vandal-proof. All standard taps, outlets and fittings shall be of approved manufacture.

Cold Water

Branch lines shall be of the following minimum sizes to domestic type outlets, unless the occupancy or use is such that normal diversity factors are not appropriate:

<table>
<thead>
<tr>
<th>Serving</th>
<th>Min. Size</th>
<th>Max. Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>one outlet</td>
<td>15mm</td>
<td>not exceed 10m</td>
</tr>
<tr>
<td>three outlets</td>
<td>20mm</td>
<td></td>
</tr>
<tr>
<td>seven outlets</td>
<td>25mm</td>
<td></td>
</tr>
<tr>
<td>Above seven outlets</td>
<td>as required</td>
<td></td>
</tr>
</tbody>
</table>

All external hose cocks to have a minimum branch size of 20mm and where branch serves more than one hose cock it is to be appropriately sized to suit the low diversity factor.

Direct mains water connected external wall mounted, or hot dipped galvanised steel post mounted, 20mm polished brass hose cocks on 50mm flanged polish brass extensions for washing down shall be located around the external surfaces of all buildings. Hose cocks shall be located approximately 600mm above ground and positioned such that a 20 metre length of 15mm nominal bore garden hose can be fitted to the hose cocks for the washing down of all external surfaces and windows of the building, i.e. Maximum spacing of hose cocks to be 35 to 40 metres centre to centre. All such hose cocks shall be fitted with lockable polished brass backflow prevention hose connectors.

Minimum outlet running pressure shall be 100 kPa. Where this pressure is not available, the above minimum pipe sizing is to be reconsidered.

Hot Water

Hot water services shall be minimum of 15mm N.D. up to 10m to individual outlets, local electric units are acceptable under some conditions where the number of outlets is small, however when electric water heaters are used, their size and location is to be brought to University Project Manager's notice prior to the design being completed.

In general, the hot water supply should be centralised using a number of natural gas fired Mains Pressure HWS in parallel with an insulated flow and return system incorporating a circulating pump plus a manual change over stand-by pump.
Dead legs should be restricted to 10m maximum except to cleaners' rooms where the dead leg may be up to 20m.

Hot Water Points. In addition to areas specifically mentioned, hot water shall be provided to the following areas:

Showers
- Showers are to be provided in all buildings as directed with water outlets to be positioned on side walls. These outlets are not to discharge towards the change area of the cubicle. Thermostatic temperature control mixing valves and lever action taps to be fitted in facilities for people with disabilities and child care areas.

Common Room Kitchen
- Hot water service shall be provided to kitchen and teas areas. Appropriately sized boiling/ chilled water units to match staff numbers are required for tea making.

Toilet Hand Basins
- Are not to be provided with hot water unless specifically called for in the brief. Where required they are to have one or three tap hole mixer sets. Individual hot and cold water bib cocks are not acceptable.

Basins for Persons with Disabilities
- To cubicles for persons with disabilities basins are to be provided with controlled temperature water and lever action taps with mixer sets. Controlled temperature adjustable valves to be located above 2100mm above floor level.

Cleaners' Sinks
- Are to be provided with hot water with mixed outlet and aerator (located maximum 450mm above sink).

Hot water units must be located in easily accessible locations for maintenance and access must not be compromised by location of other services, etc.

Minimum outlet pressure shall be equivalent to cold water.

Insulation of Hot Water Lines

All hot water lines shall be insulated in material appropriate to the project and circulating loops shall be fitted with Mechanical thermostatic control valves to maintain temperature at all points in the flow loop with a minimum flow. The use of pre-insulated copper pipe is permitted up to 15mm diameter only. Hair, felt and paper insulation shall not be used. Sectional insulation such as Ensolex or Armaflex may be used up to the appropriate temperature rating. For hot water distribution, ring mains shall be insulated with 25mm thick sectional fibreglass (or the equivalent thermal rating using multiple layers of Ensolex or Armaflex) aluminium wrapped and taped. Where exposed to view or subject to damage and in all plant rooms and ducts, pipe insulation shall be sheathed in 0.9mm aluminium.

(c) **Reverse Osmosis Water System** CARL

A commercial reverse osmosis plant "Millipore" or similar approved should be used. Reticulation shall be by means of ABS, polythene or PVC piping, the choice of reticulation material being confirmed with the users prior to design commencing.

(d) **Natural Gas**

Pipework external to buildings to be approved yellow colour coded PVC, type 2 class 100 to AS1464 or polyethylene or similar approved plastic pipe. Isolating valves may be gate, quarter turn ball or studded butterfly. Pipework (internal to the building) shall be seamless
tested copper tube as described for water supply and sized as required for loads but not less than 6mm diameter for up to 1m (serving individual laboratory outlets) and not less than 15mm diameter elsewhere.

All joints shall be silver soldered as for cold water. Isolation valves within buildings shall be of the Diaphragm or quarter turn ball valve type and each laboratory, kitchen area, plant room, etc., will be fitted with main isolating valve conveniently located for emergency access. All rooms with gas fittings or fixtures are to be provided with an emergency shut off button located adjacent to entry. A gas meter shall be provided to the building main supply.

(e) LPG

LPG shall be copper pipework throughout all as described for natural gas with pipe sizes adapted appropriate to the higher calorific value of the LPG.

(f) Inert Gases

Inert gases such as nitrogen should be supplied from the bottles located within a ventilated storage space which is easily accessible to the service road.

Cylinders shall be supported in racks and shall be manifolded with non-return valves in such a way that any cylinder can be removed and still allow the effective operation of the remainder of the bank.

There is to be rack storage space for standby bottles.

A pressure relief valve and pressure gauge should be fitted to the low pressure manifold, relief to discharge to atmosphere clear of all walkways, building openings, etc.

Pipe work shall be copper and shall be silver soldered, all as described under water services. Isolation valves may be diaphragm, quarter turn ball, and globe or needle type.

(g) Oxygen

Oxygen shall be supplied from bottles located within an easily accessible, secured, well ventilated storage space (accessible to delivery dock). Cylinders shall be manifolded with non-return valves in such a way that any cylinder can be removed and still allow the effective operation of the remainder of the bank.

A pressure relief valve and pressure gauge should be fitted to the low pressure manifold, relief to discharge to atmosphere clear of all walkways, building openings, etc.

Pipe work shall be copper and shall be silver soldered as described under cold water. Pipework to be fully degreased prior to installation. Isolation valves may be diaphragm, quarter turn ball, and globe or needle type. Oxygen lines shall be adequately drained and kept at least 150mm clear of pipes carrying gas.

(h) Compressed Air

Compressed air shall be supplied from air compressors within the building. Compressors shall be oil-free of Broomwade manufacture (or other approved equal), liquid ring or screw to suit University service requirements.

They shall be mounted together with their motor on an integral steel base and shall be effectively isolated from the structure. Tank mounted compressors are also acceptable.

The compressor shall be effectively silenced. Air cleaners shall be substantially
mounted. Unless otherwise called for, compressed air shall be supplied at 200 kPa at the bench outlet (confirm requirements with Client Department).

Pipe work shall be copper and shall be silver soldered all as described for cold water and shall grade to automatic drains with collection tundishes. Isolation valves shall be of the Diaphragm, quarter turn ball, and globe or needle type.

An air receiver shall be provided to limit the number of starts per hour of the compressors. The receiver shall be provided with all necessary gauges, safety valves, pressure stats and automatic drain for automatic operation. The compressed air system shall be complete with "mains-to-system" air regulators. At the base of all risers and low points in the distribution system fit water traps having automatic discharges similar to Spirax, Norgen or SMC and complete with collection tundishes.

(i) Vacuum

Vacuum shall be supplied by means of vacuum pumps within the building. Vacuum pumps shall be Nash or Dynavac or equivalent manufacture, water ring pump capable of passing fluids from the system without damage to the pump, fitted with bacteria filters where appropriate.

Vacuum pumps shall be mounted together with their motor on an integral steel base mounted on an inertia base equal to 1.5 times the weight of the vacuum pump and its ancillaries and shall be effectively isolated from the structure. Water seals with safety interlocks shall be provided to each pump.

Pipe work shall be solvent joint Class 18 PVC pressure pipe or Type "B" copper depending on service. Plugged tees shall be used in place of bends to allow for cleaning of piping, however at the base of all droppers and at the low points in graded horizontal pipework fit glass removable catch pots with full pipe diameter inlet valves. Isolating valves shall be of the Diaphragm or quarter turn ball type.

A vacuum tank shall be provided to limit the number of starts per hour of the vacuum pump(s). The tank shall be provided with all necessary gauges, safety valves, pressure stats for automatic operation.

29.3 All pipe work to grade to liquid collection catch pots.

29.4 Identification of Pipe work

All pipe work shall be identified with their names and colour codes as listed in Section 24.6.

The ground colour shall be applied over the full length of the pipeline or over a length of pipeline of not less than 450mm where adhesive labels are used. The location of identification marking shall be at intervals of not more than 3m (not less than 1 per floor in vertical pipework) and preferably adjacent to branches, junctions, valves, walls and control points. Such markings shall be placed so that they are easily seen from all approaches.

Service labels where applied shall be over a length of not less than 200mm at locations and intervals as specified for ground colours.

The direction of the flow shall be indicated by an arrow adjacent to each service label. An approved adhesive label shall be used for identification and indication of the direction of flow of pipework.

29.5 Underground Pipe Work

All underground pipework shall have a minimum of 600mm cover to topmost surface of pipe or pipes. Pipes shall be buried in sand with a minimum of 150mm sand above, to side and below (or on a bed of crushed diorite where base of trench is clay or rock) pipe. Pipes shall be laid in
a horizontal plane and not one above each other.

Rubber ringed jointed pipe work is not permitted under buildings or within 3m of building perimeter or external columns. All rubber ringed jointed pipework to be fitted with concrete anchor blocks in accordance with pipe manufacturer's requirements sized to reflect test pressure.

All underground pipe work shall be identified by laying continuous PVC marker tape not less than 300mm above the pipe. The marker tape shall be colour coded, magnetic and be printed with the identification of the pipe contents.

All external hose cocks shall be capable of isolation for servicing either individually or in groups. Valvebox lids are to be hot dipped galvanised hinged cast iron lid and frame set on pressed bricks and cement mortar and are to be identified and colour coded to reflect service involved.

29.6 Pumps (where required to achieve nominated pressures or flows)

General
Pumps complete with switch and control gear should preferably be provided and installed by the Hydraulics Services Sub-Contractor to ensure correct installation and control. Pumps shall be of an approved centrifugal either multi stage or back-end-pull-out type. All seals shall be mechanical seals.

Cold Water Booster Pumps.
A minimum of Dual cold water pumps shall be provided. One pump shall be capable of providing the flow and pressure required. The other pump shall act as standby, however control circuits are to enable pumps to run together during periods of concentrated load. Facilities shall exist for manual changeover for duty and standby pumps together with individual manual test stop/start switches to all pumps. Hours-run meters shall be provided for each pump. Pressure gauges of the bourdon-tube type, nominal 100mm face, with inlet union and isolating valves for servicing shall be provided on each side of the pumps. Pumps shall be activated by a drop in system pressure. A system pressure tank or tanks shall be provided with gauges fitted to tank input to enable checking of pressure system.

Hot Water Pumps
Where a central system is installed, hot water circulating pumps shall be provided in the hot water loops to minimise dead legs.

The hot water circulating pump shall be installed in the return water loop. Care shall be taken to ensure that pressure in the hot water circuit is not greater than the pressure in the cold water main. Pumps shall be of the "in line" type with totally enclosed motor. Pump casings shall be bronze with stainless steel or bronze impellers and stainless steel shafts and mechanical seals.

Circulating pumps to be single phase 250V with one metre of flex and 3 pin GPO plug. GPOs to be mounted in tandem with individual switching. Pumps to be individually isolated and fitted with unions so they are readily removable for servicing.

29.7 Inspection and Testing

(a) General

Contracts shall provide to carry out all commissioning of equipment and required tests including the payment of fees, provision of labour and test equipment. All tests shall be carried out to the applicable Australian Standard, the requirements of any Act or Authority having jurisdiction or these Standards as set out in this specification, whichever is the greatest.

No piping work, fixtures or equipment shall be concealed or covered by any means
before they have been pressure tested, flow tested and inspected by the Superintendent. All works shall be completely installed and tested as required by this Section and the Code requirements and shall be leak tight before inspection of the particular works is requested. Tests shall be repeated to the satisfaction of the authorities having jurisdiction.

All defects shall be remedied immediately and the tests reapplied to the satisfaction of the Superintendent and the Authorities.

At least 72 hours’ notice shall be given prior to the carrying out of tests. Where construction vehicles or similar equipment is used on the site allowance shall be made for retesting pipelines under concrete slabs on ground immediately prior to placing membrane and reinforcing steel or in the case of roadways, builder’s tracks, etc., immediately prior to practical completion.

(b) Test Pressures

Gravity pipelines including soils, waste and vent piping shall be tested to maximum flood conditions for three hours.

Water supply pipelines including Fire Mains and Services: 2.1mPa for twelve (12) hours and generally kept charged thereafter.

Drainage Rising Mains: 1 mPa for 3 hours or 1.5 times pipe manufacturer’s designed maximum operating pressure for 3 hours, whichever is the greater pressure.

Fire Hydrants and Fire Hose Reels shall be tested for pressure of flow as required by the Fire Brigade. Such tests to be witnessed by the Hydraulics Engineer.

Fixtures to be filled to spill level with water after installation and visually checked for leaks.

Internal downpipes to be hydrostatically tested to the maximum head possible for a minimum of 24 hours.

Pipework for gases shall be tested in accordance with the relevant code or standard or twice the working pressure or 1.5 times the pipe manufacturers’ maximum recommended working pressure, whichever is the greater.

Gravity sewers shall be water tested as for (1) above, but with maximum hydraulic pressure plus 2m or air tested to 50kPa (both tests being conducted for a minimum of 3 hours).

29.8 Sanitary Plumbing

(a) Materials

Shall be U.P.V.C., cast iron, copper or brass subject to:

– The effluent being discharged (urinals shall not discharge into copper soil drains, sewerage effluent rising mains shall be PVC or similar approved plastic material).

(b) Pipe work

Shall be concealed where possible in accessible ducts and ceiling spaces.
(c) Plumbing Ducts, Access Panels, False Ceilings etc.

Architectural drawings shall be checked to ensure all sizes and clearances etc. to conform to the Authorities' minimum requirements.

(d) Design

Design of sanitary plumbing is to be in accordance with the WAWA Bylaws and AS 3500.

No toilets or waste facilities shall be provided below the level of main sewer lines.

(e) Trade Waste

Generally all waste lines from laboratories shall be U.P.V.C. unless the effluent is incompatible. Underground drainage shall be U.P.V.C. with solvent joints. Neutralising traps shall be installed if required by regulations. Grease traps shall be installed from all commercial kitchen areas. All trade waste installations shall be subject to Health Department & WAWA approval. WAWA approval is required prior to construction commencing.

(f) Sewer Drainage

Design

Generally the drainage system shall be designed in accordance with the W.A. Sewerage and Water Supply Regulations and AS 3500.

Materials

Shall be U.P.V.C. pipes and fittings complete with solvent joint where minimum required cover is available. Otherwise mechanically jointed cast iron or reinforced concrete encased vitrified clay pipe with neoprene rings shall be used.

Pipe Sizing

To minimum Authority requirements.

Filled Ground

Where pipes are laid in filled ground the use of a concrete mat, crushed rock bed in lieu of pier and beams is to be investigated and discussed with the University.

Inspection Chambers

Shall be pressed clay bricks in cement mortar installed in accordance with Local Authority requirements. Gas air tight covers to be used throughout. Medium duty covers shall be used externally except in roadway (where heavy duty circular covers are to be used). Light duty covers shall be used internally. Brass edged covers are to be used where particular floor or paving finishes are to be used.

29.9 Stormwater Drainage

(a) Design

Calculations from Moores Tables N = .013.

Pipe Sizing

Flooding frequency shall be decided for each project after considering the damage or inconvenience flooding would cause.

For building drainage - once in 50 years;
For site works - once in 20 years.
Assessment of possible damage implication to be undertaken.

(b) Materials

Tested soil weight U.P.V.C. or V.C.P. for 100 and 150 diameter. R.C.P. for 225 diameter and over (class to be consistent with traffic loads).

(c) Inspection Pits

At major changes of direction and junctions. Precast pits with silt traps external to buildings. Stamp S-W into covers. Medium duty covers shall be used externally and light duty covers shall be used internally. Brass edged covers are to be used where particular floor or paving finishes are to be used.

In paved areas, lids are to be buried but manhole covers and/or grates are to be visible at paving level.

(d) Fittings

Generally sumps with silt traps shall be located so as to avoid the use of pits or fittings. Overflow gutters or sumps to be provided on drains from downpipes.

(e) Discharge

All stormwater lines shall discharge directly into the closest existing pits, lines or soakwells. The route, point of outlet, and method of discharge is to be approved by the University. Provide a means of dispersal and water energy reduction.

(f) Agricultural Drains

Shall be 100mm diameter (min) slotted tested UPVC pipe and fittings with lines extended to surface and fitted with brass clear-outs in finished paving. Alternatively, Nylex or similar approved strip drain can be used.

(g) Soak wells

Shall be culvert pipes classes S, X or Y depending on traffic loads. Tops to soakwell to have removable manhole covers and 100mm diameter sighting and inspection access openings extended up to ground level.

Soak wells with slotted walls are to be wrapped with geo fabric to prevent sand from collapsing into well. Tops and manhole covers are to suit traffic loads.

29.10 Backflow Prevention

All mains water services to new or altered existing buildings will be fitted with Backflow Prevention Equipment in conformity with the requirements of AS 3500 and the Water Corporation of W.A. regulations.

The basic design and installation criteria to be applied to the backflow prevention equipment are that of “containment” generally as described below:

The individual non-potable water supply connections to buildings are to be isolated from the mains water distribution network of the campus by installing in the buildings connection main an approved Reduced Pressure Zone backflow prevention device (an RPZ valve). The RPZ’s are to be installed to form containment zones for the buildings concerned.

The protection of the individual internal services of a building which is within a containment zone formed by the fitting of an RPZ valve in the incoming supply is not necessary, except for
those services supplying items of equipment whose usages are specifically listed as requiring particular consideration under AS 3500. However all laboratory taps, and mixed water outlets, including those in Fume Cupboards, are to be fitted on their outlets with high operating temperature approved DR. C.P. brass dual check valves with 316 S.S. springs. Dual check valves are to be fixed tightly to the outlets to prevent accidental removal by staff or students and “non-potable” water warning sign is to be mounted adjoining all such outlets.

All potable water outlets are to be supplied directly from the campus mains water distribution network, i.e. from the upstream side of the “containment RPZ” valve.

Whilst only a single RPZ valve is to be installed in each water service between the internal distribution mains of the campus and those of the building, pipework and isolating valves for a duplicate RPZ valve set will be installed. Prior to Practical Completion, the contractor is to supply to the University, for stocking purposes, a second separate tested approved stand-by RPZ valve of identical size and model to that installed. The stand-by RPZ valves to be held by the University for use in the event of a service emergency.

To conform to AS 3500 it is necessary to fit all RPZ’s above the surrounding ground or surface level with their discharge orifices being at least 300mm above the ground or surface. Generally the RPZ valves are to be fixed unobtrusively on standoff brackets to the external face of the wall of the building to which they are protecting.

Labelling of all internal water service pipework shall be carried out, however, it is difficult and expensive to label external buried pipes whose service duty changes from Potable to Non-Potable water due to the fitting of backflow prevention devices. To overcome the difficulties and costs associated all isolating valves on all external Non-Potable services are to be painted bright purple, whilst all new service pipework will be sleeved or wrapped in bright purple wrap to alert tradespersons that the service they are isolating, or connecting to, is a non-potable service.

The existing inverted hose cocks and garden strip sprinklers around the existing or new buildings which are connected to mains water are to be connected via RPZ valves whilst above ground wash down hose cocks connected to mains water are to be installed as per hydraulic services briefing note for external hose cocks, no new inverted hose cocks will be installed.

A separate allowance is to be made for the installation and fitting of water meters to all potable and non-potable water services directly feeding buildings.

A recording and maintenance schedule following the system set out by the Water Corporation for recording the need to test and service all testable devices and setting out the results of all testing and servicing shall be formulated and activated.

29.11 Fixtures

(a) General

Selection of fixtures to satisfy the following criteria:
- Ease of maintenance
- Availability to allow quick replacement of components.
- Standardisation across the campus where possible.
- Satisfy University sustainability objectives.

Where fixtures vary from University standard samples to be provided and approval to be sought from the ECU Project Manager.
(b) Fixtures

Cisterns

Half and full flush cisterns to be used. Care to be taken in the design of drainage from fittings served by low flush cisterns to avoid frequent blockages.

Recessed cisterns located in ducts are required except in staff toilet areas but only when so approved by the Project Manager.

Waterless Urinals

Current standard utilised by the University is the Urimat type. Prior to specification check University service agreements for these fixtures.

Taps

The University objective is to save water by the elimination of waste. Taps to be selected for low flow.

Frequent failure of nylon operating pins to ceramic discs has been experienced with taps from one manufacturer. Care should be taken with tap selection.

Taps are to be fitted with flow restrictors with the following general flow rates limits:
- Taps general 3-5l/min
- Showers 8.0 l/min

Flow restrictors to be hydromisers or approved equivalent.

Chilled Water Drinking Fountains

Allow in the Contract for the supply and installation of Chilled Water Drinking Fountains with cup filler to each floor level. Each unit is to suit people with disabilities. Refer Australian Drinking Water Guidelines.

29.12 Tanks and Hot Water Systems

(a) Tanks

General

In general, buildings other than laboratory buildings shall be supplied from mains pressure. Where water pressure is insufficient, tanks and booster pumps shall be specified. In laboratory buildings all laboratory fittings shall be supplied through a buffer storage tank of suitable capacity fitted with discharge pressurising pumps. All laboratory water outlets to be labelled "non-potable". Other fittings within the laboratory building shall be fed from the mains. All tanks shall be fitted with a strainer to the inlet.

Cold Water

Cold water tanks shall be appropriate to the projects. Tanks shall be welded, 1.2mm, type 316 stainless steel or fibreglass, circular, corrugated. Minimum tank size shall be of suitable capacity but in no case shall the stored volume plus makeup be less than 50 litres per hour per fixture. The tank shall have a lid complete with access manhole and internal/external ladder. Internal ladder to be in stainless steel. Tanks to be fitted with full height transparent indicator tube.

Demineralised Water

Demineralised water tanks shall have a minimum capacity of 2000 litres and shall be welded, 1.2mm, type 316 stainless steel or fibreglass circular, corrugated. Tanks shall have a lid complete with access manhole and if necessary internal and external ladder, all in stainless steel.
Hot Water
Mains pressure electric units if used shall be “Rheemglass/Zip”. Preferably hot water to be mains pressure natural gas pressure fired units either “Rheemglass” or mains pressure Calorifier type.

Overflows
Overflows shall be capable of discharging the full inlet water quantity. Copper safety trays shall be provided to all tanks and hot water units and tanks shall be mounted on painted jarrah bearers within the tray.

Alarms
All tanks shall be provided with high, low and extra low level alarms. Float switches shall be of Mobrey or Flyght manufacture. In addition a pressure switch shall be provided to sound an alarm should the system pressure fail. Both tank and pressure alarms are to be connected via a Data Gathering Panel to the BMS (see Section 21.33). Pressure pumps shall be de-energised when the extra low level alarm is actuated.

Solar Hot Water Systems
Consideration shall be given to the installation of electrically boosted "solar" hot water units. In all cases the consultant should check that the flows and temperatures available are suitable to the application.

(b) **Electric Hot Water Systems**
Hot water may be provided by single or multiple electric hot water units of Rheem/Zip Mains Pressure glass lined type with 3.6 kW elements. Sufficient capacity and storage shall be provided to enable supply of hot water for a minimum of four (4) hours when heating elements are shed for energy management by the BMS. Provide electric control systems to enable load shedding via BMS of all electric elements (see Section 21.33).

Where demand is large then gas heating is to be used.

29.13 **Water Meters**
Provide water meters to master supply of all buildings. Strategy for metering and managing of consumption of hydraulic services to be established.

29.14 **BMS Control Points**
Allow for the following alarms, controls and monitoring points to be connected to the BMS via a DDC in the building:
- Electric Hot Water heaters for load shedding
- Cold Water Tank - high, low and extra low level alarms
- Demineralised Water Tank - high and low alarms
- Fire Main - low water pressure alarm
- Booster Pump(s) alarms - failure
- Fire Pump Alarm - failure and run
- Compressed air alarms - compressor overload
- Low oil pressure
- Low air pressure
- Vacuum alarms- overload
- High vacuum
- Water seal failure
- Hot water circulating pumps - failure.
30. Lift Services

30.1 Preferred Contractors
Contractors either tendering or working on projects at Edith Cowan University must be approved by the manager Electrical Services.

30.2 Lift Contracts
Tenders from lift contractors are to be considered on the basis of:

- Initial capital cost;
- Annual maintenance costs.

Details of maintenance contracts should be submitted for evaluation with the tender and the supplied lift must be able to be maintained by the nominated University annual maintenance contractor who may not be the supplier of the lift. The supplied lift must not contain components/controls etc. that cannot readily be obtained by the University's nominated annual lift maintenance contractor. Lift contractor must supply a statement to this effect with the Tender.

30.3 Lift Dimensions
Lift car dimensions and requirements should be checked with the University. Lifts should be suitable for persons with disabilities access and use and at least one lift in the building should be of size to accommodate stretcher access. Minimum clear door opening width shall be 900mm x 2000mm high (but to be in accordance with AS1735.12-1999 relevant to access).

30.4 Types of Lift

5500 electric motor driven lift or equivalent to be installed. No hydraulic type lifts to be included in feasibility or projects. Lifts shall have a minimum capacity of 1156kg.

Minimum 100 starts/hour with flexibility to increase starts/hour if required.

30.5 Security

The facility shall be provided in all lifts to park the lift at the ground floor and to lock off access to and from any floor by means of key switches keyed to the University's master keying system.

Include all necessary wiring and control logic to allow access control of lift cars.

In the event of fire alarm programme lift to go down to level 1, open doors and stop.

30.6 Facilities for Persons with Disabilities

Lifts shall be designed for use by people with disabilities and shall be constructed such that operating controls, telephone etc. are easily accessible with all to be located on the side wall. Operating controls are to be arranged horizontally 900 above lift car floor. A handrail shall be provided internally and shall be positively fixed such that it is not subject to vandalism. Facilities must be in accordance with the requirements of the Building Code of Australia. Provide tactile/braille labelling of lift buttons including voice activation to floor level and on fire alarm activation.
30.7 Lift Car

(a) Internal Finishes
Lift doors and frames shall be finished satin stainless steel for both car and landings. Internal car finish shall be such as to minimise the possibility of damage. Provide vandal resistant buttons and fixings.

(b) Car Protection Blanket
Each lift shall include a protective blanket for the walls of the car.

(c) Car Operating Panel
The following shall be provided on the panel faceplate:
- Illuminating car call buttons
- Emergency stop button
- Alarm button
- Door open button
- Door close button
- “Car overloaded” illuminating indicator
- Engraved load notice
- Illuminating direction of travel indicators
- Digital car position indicators
- Exclusive service key switch
- Light key switch
- Fan key switch
- Arrangement of controls horizontally to comply with ECU accessibility requirements.

(d) Signage
Allow for installation of following signs
- “No dialling required, lift handset and await response”.
- Identification of car by Building Number and Lift Number.
- The carrying capacity of the car shall be engraved on the car operating panel faceplates.
- Lift Car Number to be fitted to the inside of the car and to match ECU’s numbering system.

(e) Telephone
Telephone to be provided and will be “hot keyed” (automatically connected) to the lift service provider. Programming will be organised by the University’s Telecommunications Officer. Handset underside to be located 900mm above car floor level.

(f) Lift Indicators
Indicators are required at each floor to indicate position of lift. Provide a digital car position indication in the car.

(g) Car Exhaust Fan
An extractor fan is required on the car enclosure complete with sound isolated supports. Fan to be a 150mm diameter propeller fan connected to an isolating switch plug unit.
(h) Car GPO

Allow for a single phase GPO in the telephone recess of the lift car. Outlet is to have a stainless steel fascia plate and fixing screws.

30.8 Lightning Surge Diverters

Allow for installation of lightning surge diverter protection.

30.9 Emergency Lighting

Provide an emergency light unit in accordance with the code with the power supply provided by a continuous trickle charged battery system mounted on the roof of the car.

Emergency car lighting shall be supplied from an inverter power supply and it shall illuminate the fluorescent light nearest the car operating panel together with the panel in the telephone cabinet door.

30.10 Lift Machine-Room

The design shall comply with the following requirements:

- The Sub-contractor shall provide a clean, completed machine with a 2 hours fire rated door. Lighting, power points and adequate ventilation, in compliance with S.A.A. Lift Code and building regulations.
- The machine-room access door, closer and notice shall comply with S.A.A. Lift Code. The machine-room access door shall swing out.
- Fire extinguishers, or a sprinkler system in compliance with S.A.A. Lift Code, shall be supplied.
- Provision of a key-safe adjacent to the lift motor room entry door.
- Filtered fresh air intake and exhaust shall be installed.
- Where possible, finishes to walls, floor and ceiling shall be durable and painted in full gloss enamel for easy cleaning. Where possible, the ceiling colour shall be white and walls off-white. Floors shall be properly sealed and receive 2 coats of grey coloured paving paint.
- Control and hoisting equipment shall be well lit by room lights, which shall be twin 36 watt fluorescent reflector-type fittings with protective guards. Lighting shall be positioned so that Maintenance Technicians are not working in their own shadow.
- The control gear shall be illuminated by emergency lighting.

30.11 Keys

Provide a set of keys to the ECU so that in case of a fault the Lift can be Parked.

30.12 Manual

Provide drawings of system and Maintenance Manuals in both hard copy and CAD format.

30.13 Maintenance & Warranty

The complete installation is to be guaranteed for 12 calendar months from date of practical completion and is to be fully serviced and maintained for that period.

During defects period, regular weekly servicing of equipment is required and a 24 hour call out service is to be provided.
During defects period completion of on-site log books provided under the contract are to be maintained.

30.14 Identification of Equipment
All items of equipment shall be identified with engraved trefelite labels, in accordance with the University's Computerised Maintenance Management System QFM Coding structure. Contact the Electrical Services Branch for details. This includes all new assets i.e. switchboards, fire panels, transformers etc.

31. Electrical Services

31.1 Preferred Contractors
Contractors either tendering or working on projects at ECU must be approved by the Manager Electrical Services.

31.2 Sustainability
All utility consumption is to be metered and data from meters presented in a form to allow comparison against historical data to enable fine tuning of systems to achieve maximum efficiency. Refer mechanical services for linking to the BMS. In addition to the BMS electrical meter data directed to the University Wonderware system metering proposal to be approved by the manager, electrical services prior to implementation. Data gathering and reporting systems must be fully operational before practical completion.

31.3 Scope
This section of the Standards outlines the University's minimum requirements for electrical services including telephone block wiring.

31.4 Flexibility of Design
The layout of light fittings, Telecom outlets and power outlets should allow flexibility such that spaces can be subdivided into separate areas. Where island rooms exist, these shall be conduited to allow for the installation of power and telephone outlets from the relevant sub-board or F.D.P. where these are not installed in the first instance. At least 2 x 32mm conduits shall feed each section of the skirting ducts in these areas.

Island floor outlets are not permitted as they present a trip hazard.

31.5 RCD Protection
Prior to work commencing on any refurbishment works, regardless of electrical changes or alterations, RCD protection to lighting circuits are required to be installed.

31.6 Lighting

(a) Performance Standards

Lighting levels on the working plane shall be in accordance with the requirements of AS 1680 Series of Standards. The defined level shall be minimum with calculated levels being no greater than plus 10%. Over-illumination shall be discouraged. Particular areas nominated for specialised requirements will be identified by the user
and the appropriate lighting levels recommended, however, at no times are these to be less than code requirements.

Options available for the control of lighting to be reviewed to ensure optimum cost effective energy management solutions are incorporated including:

- Motion detection/occupancy sensors.
- Daylight/level sensors.
- Time schedules.
- Dimming.
- LED lighting to be installed where applicable.

Such controls should be achieved by further development of existing lighting control systems on the campus.

Light fittings are to be accessible 3 metres from finished floor level so as not to necessitate the need to use scaffolding.

(b) Design Requirements

Lighting fittings should be manufactured from Australian made components and be approved by Western Power. The fittings are preferable to be manufactured within Australia. Downlights shall be of the LED type, to be approved by the Electrical Manager ECU. No compact fluoro's shall be used in any situation. If the fitting is not available in Australia then they may be sourced from abroad provided the quality is acceptable to the University. Light fitting selection to be approved by the University Electrical Manager, in general lamp types to conform to University standard selection.

Fluorescent fittings shall incorporate power factor correction (except fluorescent lighting controlled through dimming units which may have power factor correction capacitors at the dimmer unit) and be of the switch start type and low loss or electronic ballasts. The final determination of ballast types shall be reviewed with the University. Spring loaded tombstone lamp holders shall not be used.

All fittings should be adequately ventilated or designed to ensure excessive temperatures within the fittings does not result. Temperature rise in the fittings should be restricted to 50°C above ambient.

Where recessed Downlighters are installed they shall have non-flammable ceiling guards installed to prevent the insulation from encroaching on the fitting causing overheating and the opportunity of a fire commencing. Similar or equal to Ceiling Light Guards supplied by Thorn Lighting for LEDs lights.

Diffusers shall be easily removable and all components shall be easily accessible. Fittings which have to be dismantled in order to replace lamps shall not be used. Standard diffusers shall be as a minimum K12 prismatic in general service areas, Louvered Style Diffusers in general office areas Separate whiteboard illumination using fluorescent tube lighting or similar shall be provided. The lighting design in Teacher areas, where multimedia presentations are accommodated is to incorporate greater flexibility and control of lighting than normal conventional designs. Design solutions
should incorporate dimming of all lighting with flexibility to allow switching off of light fittings that adversely affect presentations on projection screens.

Light fitting design and layout should satisfy the intensity requirements for open offices but should have sufficient flexibility to enable partitioning of individual perimeter or island offices.

The length of fitting should suit the ceiling module.

The fluorescent tubes shall be "T5 Cool White, 4000ºK 85 RA" Philip Alto low mercury, or Osram Eco equivalent a minimum of 20,000Hrs operation in all areas unless specified differently in the Building Brief for a particular purpose. Retaining lanyards for the diffuser shall be stainless steel wire. Plastic lanyards are not acceptable. All fluorescent fittings shall incorporate their own fuse (Pierlite PT505 fuseholder fitted with a F5 fuse). Prismatic diffusers are not to be used unless the environment requires dust proof fittings.

External lighting of buildings shall be discussed with the University Manager and Manager, Electrical Services. The external paths associated with a particular building project shall be illuminated as part of that building. All external lighting shall be consistent with that of existing buildings. External lighting control shall be through the use of BMS and building lighting control system where provided.

Where false ceiling exists, fluorescent fittings shall be connected to the wiring loom by means of a three-pin plug and 2000mm of flexible lead. Suspend/secure cabling within building spaces of removable tile ceilings in such a manner and spaced above ceiling to ensure cables do not interfere with removal and reinstallation of tiles, or maintenance of in ceiling equipment. A Maximum fixing distance of no more than 900mm apart.

Unless otherwise approved by University all wiring, including sheathed cables and conduiting, shall be concealed within or by the building structure in a manner that can be replaced without damage to the completed building finishes.

Where no false ceilings exist, consideration may be given to running all services exposed. Conduit runs in this case are to be carefully worked out prior to installation.

Starters shall be of the electronic type equivalent to WOTAN DOES ST171 except for 20W fittings where 20W starters shall be used. Non-flickering electronic starters shall be used in all areas.

Downlights shall not be used for general illumination. Dimmable fluorescent or LED downlights in conjunction with fluorescent lighting shall be used in teaching spaces where directed to provide dimmable lighting for video projection requirements. Metal halide type fittings shall NOT be used in teaching or office areas due to the minimum of the 15 minutes strike up time and the fitting being susceptible to loss of function due to power disturbances.

Light fittings in store areas or libraries shall be located at least 400mm away from shelving in order to comply with the University’s Fire Insurance Requirements. Ensure lighting layout indicates final position of shelving and that fittings are dimensionally located to avoid shelving conflict.
(c) Works of Art

In the public areas of the building and in all meeting rooms within the building, ensure the spaces are able to be used to display the University’s Art Collection. Liaison should occur at an early date in the development of the plans with the Project Manager and Art Curator to identify “gallery” areas.

The following guidelines apply in such gallery areas:

- Designated walls in gallery areas should receive no direct sunlight.
- Lighting in designated gallery areas should provide an even illumination of the wall.

Where incandescent lighting, such as spotlights or wall washers are used, they should be dimmable LED to allow adjustment of the lighting level between 50 lux for works on paper and 150 lux for works on canvas. Where spotlights are used, they shall be LED and at least 2 metres from wall.

Where fluorescent lighting is used, such lighting shall use low UV fluorescent lamps or have lamps fitted with UV absorbing polyester sleeves.

(d) External Lighting Poles & Bollards

Lighting Poles & Bollards shall be “Avenue” model manufactured by Thorn preferred on all campuses.

External lighting. Control of external lighting to be through the BMS. External lights consist of grounds circuits and security circuits. Inline circuit breakers/fuses will be installed to each light pole supply. A balanced supply load to each circuit and that grounds and security lighting are evenly distributed around external areas. Typically 50% of each.

31.7 Switching

Switches should wherever possible be located on permanent walls or columns. Switches are to be 900mm above the finished floor level. Block switching should not be used except where special circumstances dictate. Intentions to block switch areas should be discussed with the Manager, Electrical Services, prior to final design. Switching and dimming in all teaching spaces shall be in accordance with requirements for Lecture Theatres. All switch plates shall be identified with IPA studs as to circuit and switchboard of origin.

Light switches are to be rated at 15 amps (not 10 amps) and to have heavy-duty mechanism for fluorescent loads (Clipsal 30 FLM15 or equivalent).

(a) C-Bus Lighting Control

General

Provide a lighting control system complete with all switching modules, dimmers, switches and other control devices, control panels, power supplies, wiring and other equipment necessary to provide a complete and operational installation.

C-Bus Lighting Control is the preferred lighting control system for all campuses.

The ECU Electrical Manager must be notified prior to any additions or alterations to the
C-Bus System/Network.

Once the additions or alterations have been made the contractor must submit the changes to the Electrical Manager or his Deputy, for Sign-Off, before they are saved to the Network Data Base.

Personnel carrying out works on the Clipsal C-Bus ALCS are required to have undertaken the Basic and Intermediate C-Bus Training Course carried out by Clipsal Integrated Systems and attained an ‘Approved Installer’ and / or ‘Point One Accredited Integrator’ qualification for the Clipsal C-Bus ALCS. A list of suitable qualified personnel shall be submitted.

Installation, Testing and Commissioning of the Clipsal C-Bus ALCS shall be carried out in conjunction with Clipsal Integrated Systems and an approved commissioning technician.

System

The Clipsal C-Bus ALCS shall be microprocessor based and utilise Category 5E Unshielded Twisted Pair (UTP) cable with 240V AC insulation rating as the communication medium between intelligent network nodes to control lighting.

The system shall comprise modules with in-built microprocessors, which can be programmed via both learning the relationships between input and output devices without the use of a personal computer or at a higher level with a personal computer using a Microsoft Windows based application software.

All hardware shall meet the requirements for electromagnetic compatibility for certification with the CE mark.

The devices shall maintain programmed parameters during power failures with Non Volatile Random Access Memory (NV-RAM). The control system shall remain fully functional in the event of supervisory computer shut down or failure.

The Clipsal C-Bus ALCS shall use high speed, full duplex communications protocol. The system shall provide constant feedback on the operational status of inputs and outputs and have the ability to interrogate the status of specific modules.

The Clipsal C-Bus ALCS protocol shall implement the International Standards Organisation (ISO) Open Systems Interconnection (OSI) seven-layer reference model for communication protocol.

The Clipsal C-Bus ALCS protocol shall provide transmission error checking for all information passed over the network.

The Clipsal C-Bus ALCS shall use high speed, full duplex communications protocol. The system shall provide constant feedback on the operational status of inputs and outputs and have the ability to interrogate the status of specific modules.

The Clipsal C-Bus ALCS protocol shall implement the International Standards Organisation (ISO) Open Systems Interconnection (OSI) seven-layer reference model for communication protocol.

The Clipsal C-Bus ALCS protocol shall provide transmission error checking for all information passed over the network.

The C-Bus Automatic Lighting Management System shall incorporate the following facilities:

- Time based scheduling for energy management control of lighting.
- Photoelectric cell dimming control of the open plan area artificial lighting and lumen depreciation compensation.
- Occupancy sensors for energy management control of lighting.
- Be an easily programmable energy management and time control, using PC and Windows XP™ based configuration software.
- Have the ability to interface with the Building Automation System at high or low level.
- Automatic OFF control of lighting if required.
- Automatic ON control of lighting if required.
- Automatic On and OFF control of lighting using occupancy sensors.
- Manual ON/OFF control of lighting at all times.
- Provide an easily configurable logic engine to enable implementation of network logic functions and control scenarios.
- Provide a full range of plastic, stainless steel and glass faced switch panel options.
- Provide the option for ‘Dynamically Labelled’ switch identification using DLT technology.
- Be compatible with luminaire control gear generally available.

(b) Electrical

The Clipsal C-Bus ALCS shall use an extra low voltage (less than 36V DC) bus to interconnect all control and switching units. Cat 5E UTP cables shall be used as the wiring medium for this bus. Shielded communication cables shall not be used due to the risk of group loop interference.
Input and output units shall be connected on the system bus in parallel.
The Clipsal C-Bus ALCS shall be powered by a two (2) wire network, superimposing data and unit DC power supply onto one pair of data wires avoiding multiple connections of the networked devices.
Short circuit of the network power supply shall have no long-term effect on the system once the fault is repaired.
Each unit shall have a unique serial number embedded in firmware for ongoing product traceability and warranties, be individually programmable and be identified by a unique network address code.
The Clipsal C-Bus ALCS bus shall be electrically isolated to 3500V AC RMS for one (1) minute from the mains wiring.

(c) General Lighting Control System Functions

The general function of the C-bus ALCS to included but not be limited to the following general scenarios:

Offices / Administration Open Plan Areas:
- Local switch On/Off, with daylight sensing
- Provide intelligent programmable light level sensors, to measure the natural day light levels and according to a predetermined lux level to intelligently monitor and dim various circuits depending on these factors.
- 360 degree Occupancy sensors to be located within these areas as depicted on plans and setup to automatically turn lighting off for after hour operation.

Security, Corridor and Foyer Lighting

Internal and external security lighting shall be provided to operate during normal hours of darkness. Corridor and foyer lighting shall also be provided throughout all buildings. The lighting shall be switched in the following groups:
- Group 1: External Security Lighting
- Group 2: Internal Security Lighting
- Group 3: Corridor/Foyer Lighting

These lighting groups shall each be contactor controlled at the local sub-board with switch control also available in corridor/foyer for use by cleaners. A master / slave or contactor system shall be used where the master contactor is controlled by the time switching function of the BMS. This shall apply to all external lighting.

External security lighting to be controlled in conjunction with the BMS incorporating PE Cells and time clock function. Information relevant to types and source of external lighting shall be discussed with University Project Manager and the Manager, Electrical Services. Designated “safe lit corridor/safe lit car park” are to be identified by the University Project Manager and such designated areas to be totally controlled by BMS.
Each external lighting group shall have a manual override system provided at the local supply distribution board in addition to the BMS system.

For corridor lights provided in addition to the above a local override at each entry to the corridor to allow for out-of-hours use. (Alternatively occupancy sensors to be installed in the corridor areas for out-of-hours use.)

Corridors
- Light switch panel to be located at the entry to the corridor to allow for out-of-hours use.
- Occupancy sensors to be installed and programmed as a re-trigger able timer to automatically turn lights On / Off after 60 minutes if no movement is detected.

Store Rooms/ Cleaner Rooms
- Switch On/Off, with occupancy sensor, sensors to be programmed as a re-trigger able timer to automatically switch lights On / Off after 15 minutes, if no movement is detected.

Offices
- Controlled by a local switch and a PIR occupancy sensor.
- Switch in the On position sets the system in Auto mode turning the lights On and enabling the occupancy sensor, occupancy sensor to be programmed as a re-trigger able timer to switch lights Off after 20 minutes if no movement is detected.
- With the switch in the Off position this disables the occupancy sensor and the lights remain Off.
- Alternately a PIR occupancy sensor only (no local switch panel) may be programmed as a re-trigger able timer to switch lights On/Off with a 20 minutes re-trigger time delay.

Plant Rooms and Service cupboards
- Local On/ Off switch

Toilets
- Controlled by PIR occupancy sensor to be programmed as a re-trigger timer to turn lights On / Off after 30 minutes if no movement is detected.
- Occupancy sensors to be located in both the Air lock and toilet cubicle area.

Stairs
- All windowless fire escape stairs and internal stairs shall have circuits controlled only at the distribution board.
- Stairs which have sufficient natural lighting shall have lights controlled by PIR occupancy sensor to be programmed as a re-trigger able timer to automatically turn lights On / OFF after 10 minutes if no movement is detected. Care to be taken in locating occupancy sensors to ensure safe use of stairs

Staff / Meeting Conference / Board Rooms
- Lighting to be controlled via a local light switch panel and PIR occupancy sensors.
- The light switch panel will have the ability to turn the lights On/Off and dim.
- Occupancy sensor to be programmed as a re-trigger able timer set to 30 minutes, when no occupancy is detected the lights to fade Off over 30 seconds.
- Dimming facility via the light switch panel with the ability to turn the lights Off adjacent to the projector screen.
Laboratory / Teaching / Prep Areas / Foyers / Study Areas / etc
- Lighting to be controlled via a local light switch panel and PIR occupancy sensors.
- The light switch panel will have the ability to turn the lights On/Off and dim.
- Occupancy sensor to be programmed as a re-trigger able timer set to 30 minutes to turn lights Off after 30 minutes if no movement is detected.
- Dimming facility via the light switch panel with the ability to turn the lights Off adjacent to the projector screen / white board.

Perimeter dimming
- The luminaries on the perimeter of the building shall generally be controlled such that in the event of there being sufficient natural light from the windows, the luminaries shall be dimmed in response to the available natural illumination by the lighting control system.

(d) C-Bus Control Modules

C-Bus control modules shall be located in an accessible location within a locked cupboard. Preferably adjacent to an electrical distribution board. Location to be approved by Manager Electrical Services.

Under no circumstances will the location of controls in ceiling spaces be permitted

(e) Touch Screen

- The colour touch screen must be capable of controlling and monitoring the lighting control system.
- A programmable Touch screen device connected to the data network shall provide Scheduling and Scene management. Obtain an IP address from the Manager Electrical Services
- Touch screen to be located in a room/ service cupboard not accessible by the general public. Location to be approved by Manager Electrical Services
- Pages to be set up to mimic inputs and outputs to individual areas as nominated.
- Real time clock display and setting facilities from the touch screen.
- Touch screen to provide scheduling function for internal, external and security lighting.
- Schedules shall be able to be modified by the user without the use of any programming tools or devices

(f) Ethernet Interface

Provided a C-Bus Ethernet interface part number 5500CN located in the communications room and patched back to the communications cabinet. Network the system and connect to the lighting control maintenance PC at the Joondalup campus administration building.

IP address will be provided by the Manager Electrical Services.

Request ECU IT patch interface to C-Bus VLAN with its static IP Address

(g) Network Bridge

Network bridges shall be allowed for the building as required. Limit each network to a maximum of 70 devices and 700 meters of network cabling to allow 30% expansion for
future use. If this is to be exceeded the project must be split into multiple networks and then joined via a 5500B Network Bridge. A backbone network topology for the project is to be submitted to Clipsal Integrated Systems for approval prior to construction.

(h) Relay and Dimmer Controllers

The relay, dimmer and DSI gateway modules shall be housed in an approved enclosure adjacent the floor distribution switchboard within the electrical riser. Alternatively an extension to the floor distribution switchboard can be provided to house the modules.

(i) System interface:

The lighting management system shall have the ability to interface to the building management system at various levels.

- Volt free contact.
- BACnet IP Gateway
- OPC Server software

(j) Naming Convention

The C-Bus lighting control system is installed across multiple buildings. A naming convention is required to:

- Ensure consistency in the naming of various projects, networks, devices and load groups in each building.
- Provide a mechanism to easily identify where the device is located and what area it controls.
- Minimise the use of cryptic acronyms wherever possible.

General Format

General Format for naming of a point shall be:
Project>Network>Application>Group Address

Where:
- **Project** Describes the name of the building and site (up to 8 characters)
- **Network** Describes the vertical or horizontal location as a floor level.
- **Application** Describes the control system application
- **Group Address** Describes the controlled load type and location. Include ipa\circuit# if a relay

Example:

<table>
<thead>
<tr>
<th>Project</th>
<th>Network</th>
<th>Application</th>
<th>Group Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building 21</td>
<td>Level 2 East</td>
<td>Lighting</td>
<td>Rm 2.01 front W1</td>
</tr>
</tbody>
</table>

- The concept is that a programmer or maintenance staff person is able to identify the group address or tags with minimal reference to drawings or documentation.
- Project identifier can only have 8 character; all other identifiers have up to 32 characters.

Device Identification

All units on a C-Bus network have a unique identity code called a unit address, this identifies a specific device connected to the C-Bus network. A reserved unit address
approach should be taken when designing the project.

Following format shall be followed:

<table>
<thead>
<tr>
<th>Unit Address</th>
<th>Part Name</th>
<th>Tag Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unique code that identifies each unit on a single network.</td>
<td>Tag to identify unit. Restricted to 8 characters.</td>
<td>Tag to identify unit, up to 32 characters.</td>
</tr>
</tbody>
</table>

Example:

<table>
<thead>
<tr>
<th>Unit address</th>
<th>Part Name</th>
<th>Tag Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>052</td>
<td>Rm 508</td>
<td>Rm 508 switch 1</td>
</tr>
</tbody>
</table>

Note:
- Reserved address approach should be used where the outputs start an unit address 001 and input devices from unit address 020 and above.
- Unit address 255 is reserved as a default for new units, no C-Bus device with this address should be left connected to the network once commissioning and handover has been completed.
- Abbreviations should only be used where the C-Bus system cannot accommodate the full text description.

(k) Documentation

The Installing Contractor shall provide a complete set of 'as installed' drawings and an end user instruction booklet. Label all C-Bus distribution board schedules internally include C-Bus unit number on module. Include secure copies of electronic databases of all programmed devices including C-Bus Tag database, C-Touch Project file xml, PAC xml file or any other files needed.

(l) Warranty

The Clipsal C-Bus will carry a two-year warranty; the installer to provide proof of installed dates and is subject to manufactures conditions of Warranty.

31.8 Power

(a) Socket Outlets

Unless specific requirements are detailed, allow two double Socket outlets per workstation or 10m² of net useable space. All socket outlets shall be identified by means of circuit identification I.P.A. red, white and blue studs as to the circuit on which they are installed and the switchboard of origin. In the case of the Clipsal 2000 range socket outlets the IPA shall be installed under grid plates and an adhesive label to the face between the socket outlets.

All three phase outlets shall have 5 round pins.

Emergency power isolation is required for all power outlets in each laboratory, machine room that are considered to be hazardous areas but such rooms do not include computer teaching rooms where general teaching in computing is carried out, and is to be located at the lecturer's bench or in locations approved by the University Project Manager and the Manager, Electrical Services. All services emergency stop control for an area shall be grouped together for easy, convenient access.
All socket outlets (1 phase and 3 phase) shall be protected by devices incorporating 30mA RCD Protection (Residual Current Device).

All Socket outlets protected by RCD’s shall be engraved in 5mm high green filled lettering “RCD PROTECTED”.

Unprotected power may only be provided when written permission has been given by the Maintenance Manager, Electrical.

All Socket outlets not protected by RCD’s shall be engraved in 5mm high red filled lettering “Not RCD Protected” with the name of device under, i.e. “NOT RCD PROTECTED BOILING WATER UNIT ONLY”.

Engraving of removable surrounds is not acceptable.

Provide dedicated Socket outlets for cleaners (engraved accordingly) at appropriate locations throughout the building, catering for vacuum cleaners, etc. These outlets are to be installed 600mm above floor level.

All socket outlets are to be switch operated.

(b) Switch Boards and Sub-Boards

Main Switchboard. Regardless of the initial requirements, the main switchboard shall be designed to Form 3B and be able to withstand the maximum prospective fault level for the maximum design capacity of the substation. All switchboards will be fitted with smoke detection. The main switchboard shall be of type tested construction, floor mounted, free standing compartment cubicle type construction (“dead front” type and fitted with circuit breakers or switch fuse units to control outgoing circuits).

The unimpeded space around a Main Switchboard shall not be less than 1.2 Metres where the panels are removable either with or without tools to permit the tradesperson enough exit space.

The switchboard is required to be approved prior to manufacture by the University Manager, Electrical Services. All such switchboards are to be of steel construction.

Building main switchboard shall incorporate Shunt Surge Diversion to the incoming supply. In addition inline surge reduction filtering shall be provided to “clean power” supply to boards serving Teaching and Laboratory areas as directed by University.

All switchboards shall be provided with an individual feed to a 10A Socket Outlets incorporated into the switchboard or in an easily accessible location on the wall within the cupboard, for test equipment use.

Provision shall be made to extend the main busbar systems in either direction. At least 25% spare space shall be provided as an absolute minimum. Main switchboard shall have capacity for additional switchgear and sub mains for future expansion. Mains cables shall be sized accordingly to take account of the full expansion potential of the board.

All Switchboards shall have Isobars fitted.

Generator Supply Where specified a Generator Supply inlet socket shall be fitted to the outside of the Building Main Switchboard, Sub Board or Switchroom or as specified by
the ECU Electrical Manager. An electrically interlocked changeover switch shall be installed on the switchboard and labelled accordingly. Key access to switchboards is to comply with the University's Keying System.

The main switchboard shall be designed in accordance with AS 1136 "Switchgear and Control Gear Assemblies for Voltage up to 1000V AC".

Following full load being applied to board, typically mid-way through the defects liability period, condition monitoring of switchboards to be carried out using thermal imaging. Report on thermal imaging to be included in electrical manual.

Sub-Distribution boards, lighting and power supply. Sub-boards shall be of steel construction and arranged for floor or wall mounting unless circumstances dictate otherwise. At least 30% spare capacity shall be provided on all sub-boards. Sub mains cables shall be sized to take account of the full expansion potential of the board. Escutcheons shall not be interlocked with switches, isolators or circuit breakers.

Key access to switchboards is to comply with the University's Keying System.

Lighting, power and 3 phase circuits shall have clearly defined separate areas on the sub board with each having its own isolator in addition to the distribution board main switch. A separate mechanical services switchboard (MSSB) or separate section on the board shall be provided for air conditioning feeds. Boards servicing Teaching and Laboratory areas may also require separate “clean power” chassis section and isolator.

Vermin Protection. All switchboards and sub-boards shall be designed to be vermin proof.

Fuse Cartridges. All fuses shall be HRC cartridge type conforming to AS2005 and AS3135. A minimum of six (6) spare cartridges for each rating shall be supplied at each switchboard position. Spare fuse cartridges shall be mounted on a suitable rack, easily accessible without removing escutcheon plates. At the main switchboard, in switch rooms or substations, spare fuses shall be located in a wall mounted enclosure. At distribution boards, cupboards, the fuses shall be mounted internally on rear face of door. In special circumstances DIN fuses may be acceptable up to 32 amps.

Sub Metering. Metering shall be provided by microprocessor based networked monitoring devices providing complete electrical metering and indication Schneider approved metering with pulse output capabilities.

Master meters shall be provided in each building main switchboard to register building consumption and consumption for each of the main building services emanating from the board including, but not limited to Air conditioning and Mechanical Services, Hydraulics and Hot Water with slave meters for submains to selected distribution boards. The main meter for the building provide Pulse kWhrs output to the BMS.

Push Buttons. Shall be of the shrouded type.

KW Transducers. Shall not be used without prior approval from the Manager, Electrical Services.

Indicating Lights. Shall be of the integrated LED lamp type with a minimum life of 100,000hrs.
Meters. All non-digital meters shall be selected such that the normal deflection is 80% of the full scale range. A voltmeter with selector switch and 3 Ammeters with M.D.I. shall be provided on each main switchboard. Use one set of CT’s.

Metering test link. Shall be provided for all current transformer sensing metering complete with voltage isolating links and current shorting links.

Labelling. Each and every control, switch etc. on main switch-boards, sub-boards etc. shall be clearly labelled. All labels shall be engraved traffolyte, and attached to the switchboard by means of non self tapping type screws.

All ECU assets to have asset list identification labels attached. This will be carried out under the project and installed by the contractors.

Circuit Schedules. Shall be typed and be provided at all switchboard positions. The information contained on the schedules shall consist of circuit breaker identification number, phase colour corresponding with type and location of each circuit. This information shall incorporate room number and whether it serves power, lighting, mechanical services, etc. The switchboard schedule to indicate where supply is fed from, cable type and size to be laminated and fixed to inside of switchboard door and shall also contain the switchboard sub-main size and point of origin.

Colour. All switchboards shall be colour orange X15 (AS2700-1996).

Circuit Breakers. To final sub-circuits shall be Merlin Gerin type miniature circuit breakers and shall have individual RCD protection for all power circuits and lighting circuits. Other circuit breaker types may be submitted to the University for approval.

Discrimination. Prior to selection of switchgear a supplier, the switchboard manufacturer must ensure discrimination can be achieved as follows.

Co-ordinate the protection equipment on all main and distribution switchboards such that in the event of any condition of over-current or short circuit occurring at the load side of terminals of any submain protective device or final subcircuit equipment isolator/connection device:

- Sub-mains protection effectively discriminates.
- All lighting circuits continue to operate apart from any lighting which is supplied by the faulty circuit.

Short circuit calculations shall be for all faults up to and equal to the prospective fault current at each distribution switchboard.

Certify compliance with the above in writing to the Principal, including fault and discrimination calculations for switchgear used prior to submission of switchboard shop drawings for examination.

Submission of equipment list and manufacturer’s discrimination and enhanced selectivity charts are acceptable in lieu of individual calculations, where these are available.

All Neutrals, Earths and Active Cables. Shall be number ferruled to correspond to the circuit breaker number. All circuit breakers shall be numbered consecutively on the
escutcheon plate and on the circuit breaker mounting bracket for ease of identification once the escutcheon plate has been removed.

All active cables entering circuit breakers shall be via cable lugs. All control wiring shall have number ferruled with numbers as indicated on as constructed drawings.

Neutral bars shall have the same number of terminations as there are circuit breakers and holes for main neutral and MEN connection. Earth bars to have terminations equal to the number of circuit breaker positions. Blue point connections shall not be permitted within switchboards and sub-boards without prior approval from the Manager, Electrical Services. System of earthing shall be MEN system.

Standard Equipment. For all switchboards and sub-boards for light, power, air-conditioning or other building services shall be as follows:

- Alarm Relays: Releco MR-C 11 pin base.
- Time Relays: Releco MR-C 11 pin base.
- Auto/Off/Manual Switches: Kraus and Naimer.
- Active Links: Blue Point or Busbar System.

A sample of the contactors shall be submitted for University approval prior to their installation in switchboards.

Inspection and Testing

The University reserves the right to inspect during the course of construction. The sequence of inspections is as follows:

1. Approval of switchboard drawings prior to commencing manufacture.
2. Factory inspection when the switchboard is assembled prior to painting.
3. Factory inspection after ductor, primary/secondary current injection and hi-pot tests have been carried out prior to leaving the factory.
4. During the warranty period, the highest load time frame to be agreed with the university for a thermograhic and Power quality analyse be carried out and a written report be submitted to Building and Services.

(c) **Quality of Power Supply**

At the point of attachment to any new building, the Power Factor shall be less than 0.85 during ON PEAK hours at normal running load. If the Power factor is not less than 0.9 then Automatic Power factor correction equipment shall be installed at no cost to the University.

The Currents across the three phases shall be balanced within plus or minus 10% of each other.

The quality of the power at the point of supply to a new building shall conform to AS2279 and Western Power Technical Requirements. A power quality audit shall be carried out prior to tenant's occupation and after during the peak load period to verify it conforms to the standards specified. If the supply is non-conforming due to tenants equipment then the University shall cover the cost of filtration but if the source the distortions are for example from a Variable speed drive on the Air conditioning plant then the contractors will be responsible to cover the cost of installing Filtration or rectifying. The reports of Quality Audit are to be provided for inclusion in the Electrical Maintenance Manual for the Building.
(d) Sub mains.

Underground sub mains shall be in PVC conduits, via cable pits (Gatic lid and brick construction trafficable type where in paths). Where fibro cement or similar pits are used they shall be installed with 100x100mm concrete collar to strengthen lid support lip. Provide adequate spare conduits for future use. Pits shall be drilled for conduit access and gaps around conduits filled to approval.

(e) Earthing

Provide all Earth Testing data of the total installation to indicate compliance with regulations.

31.9 General Wiring

Power and 240V control cable shall not be less than 2.5mm² stranded copper, 240 volt control cable shall be not less than 1.5mm² stranded copper conductors. Lighting circuits shall be wired using not less than 1.5mm² stranded copper conductors. Colour coding shall be in accordance with AS 3000 part 3.2. Control wiring shall be white with a minimum size of 1.5mm² stranded copper cable. Single core copper cables shall not be used.

Colour differentiate power from light cables. Black TPS for power and white for light.

Install and conceal all wiring, including sheathed cable, within or by the building structure in a manner that can be easily replaced without damage to the completed building finishes.

Suspend/secure cabling within ceiling spaces of removable tile ceilings in such a manner and spaced above ceiling to ensure cables do not interfere with the removal and reinstallation of tiles, or the maintenance of in ceiling equipment.

Loop cables from point to point with joints and connections only at switches or outlets.

Seal cabling passing through a roof with a mechanical screw-up gland and apply an approved non hardening UV resistant sealant.

Do not install cables in any area until all construction work which is likely to damage cable is completed.

Group and install all cabling in straight runs parallel with line of building. Refer to AS3000 Wiring Rules regarding derating factors for cables. Cable sizes specified have not been derated for grouping of multiple circuits unless otherwise noted. Where derating is necessary due to installation method/grouping, increase cable sizes as specified in AS3008.1.

Cable entries to switchboards or equipment shall be via gland plates or through panels shall be made using circular, orange-sheathed, cable and suitable compression glands. Double insulated flat cable may be used if entering through ducts or conduits.

All metal Cable Trays, Ducting, Trunking, Cable Enclosures and conduits shall be bonded to earth, back to the nearest switchboard.

Portable electrical equipment and heaters used in hazardous areas to comply with AS3000 and AS1076.
Cable trays, conduits and conduit saddles shall have the following colour coding throughout the entire installation:

- Orange for power, lighting and 240V controls.
- Grey for Data or Extra Low Voltage or Low Voltage Controls.
- White for Telephones (and data where combined in same cable).

Conduit saddles shall be of type to ensure conduits are installed flush with wall/ceiling surface. Ducts and cable trays shall be fully galvanised where exposed to the weather and colour banded to the above schedule every 3 metres (to all locations). All cable trays shall have 15% spare carrying capacity.

31.10 Emergency Lighting

Emergency lighting shall be provided in accordance with the requirements of the Building Code of Australia and the Australian Standards.

Careful selection of emergency lighting shall be made so that the lighting meets the University's statutory obligation in a discrete way, particular attention to this issue must be made when emergency lighting may impact on architecturally splendid areas such as building entry points or architectural areas of importance.

Where existing Nexus monitored emergency lighting systems exist those systems shall be added to and extended as necessary. All systems shall be fully tested and commissioned to the supplier's and ECU's satisfaction.

All new buildings shall have Nexus monitored emergency lighting systems installed to match the existing systems on ECU campus. Any such new system shall be networked back to the head end PC on Joondalup campus as part of the project.

Emergency exit lights shall be of a Cold Cathode type or LED type. Battery types shall be of the highest quality and designed to provide the longest possible life for the battery. Where access to emergency lighting is at normal ceiling height battery pack shall be mounted local to each fitting. Where situations with high ceilings or difficult to access areas exist other options may be considered in consultation with ECU. Surface mount type fittings shall not be used.

As constructed data for emergency lighting systems shall include fully documented drawings including type and locations of fittings. Where computerised systems have been provided emergency lighting database reference information shall also be contained on the drawings.

Refer to AS 2293 "Emergency Evacuation Lighting in Buildings".

Emergency lights shall only be decommissioned with ECU approval prior to any work being carried. (We are have a lot of faults on the Nexus system, due to contractors disconnecting Lights and not recommissioning them)

31.11 Exit and Stair Lighting

Exit and stair lighting shall be in accordance with the requirements of the Fire Safety Act. Exit and stair lighting in enclosed stairs shall be designed to be "ON" at all times. Switching therefore shall be provided only at the circuit-breaker. In non-enclosed stairs, or stairs where natural light is sufficient for day time use, stair lighting shall be switched by the external lighting program of the BMS and energy management lighting control system when applicable. Emergency lighting to these areas shall be installed. Provide exit and stairway signs to comply
31.12 Lightning Protection

Lightning protection shall be provided, if required, to all buildings in accordance with AS 1768-1991. Lighting protection is required on all Joondalup Campus Buildings due to the high “strike” incidence on the campus.

31.13 Electric Fans and Fan Heaters

In non-air-conditioned offices where fixed electric heater with a push button on-off switch is provided, an overriding control through the BMS, for load shedding purposes shall be provided as follows:

All heaters in common designated area shall be wired on circuits controlled by a contactor which is controlled through the BMS for load shedding purposes. When the contactor energises the circuit(s), occupants can then operate heaters via push button control.

31.14 Toilets

Allow for one socket outlet adjacent to the mirror in toilet areas. No socket outlets for general use shall be installed within the restricted zones as defined by AS 3000. Disable Toilet alarms shall be fitted with a remote alarm to a staffed position occupied during the normal operational hours of the Building.

31.15 Tea Rooms

Allow for sufficient power for briefed equipment including general power outlets for general use. 3 phase power to be provided for water heater where specified.

31.16 Gas Meters

All wiring connected to all gas meters to be installed as per Standards Association of Australia requirements for electrical circuits in a Zone 2 environment protection is required to enable the circuits to be rated as intrinsically safe.

31.17 Distribution System

Distribution of power and telephone/data wiring may be by means of a two channel perimeter aluminium skirting of colour as directed by the consultant architect.

In large open areas, in-floor, two channel duct with floor boxes and sealed cover plates should be considered as well as service poles. Where island rooms exist, these shall be conduit to allow for the installation of power and telephone outlets from the relevant sub-board or F.D.P. where these are not installed in the first instance.

Floor outlets for power and telephone outlets shall be of Clipsal manufacture or equal, however floor outlets are not recommended as they present a "trip" hazard.

All ducts shall have a minimum of 2 x 32mm feeds from the sub-board to each section of the duct.
31.18 **Clock System**

Battery operated 305mm dia. clocks shall be standard and shall be provided at the front of all lecture theatres, all teaching spaces, laboratories, common rooms, general offices, foyers, and lift lobbies.

31.19 **Electric Water Heaters and Circulating Pump**

Water heaters and circulating pump shall be controlled through the BMS with over-riding control at the distribution board supplying the circuits.

31.20 **Underground Services and Pits**

All underground services shall be installed in accordance with the requirements of AS 3000 shall be colour coded as follows:

- Gas Services = yellow painted lid
- Fire = red
- Water = green
- Electrical = orange

and shall be laid in sand with 75mm below and 150mm above and to sides and shall be identified by laying an approved continuous PVC marker tape 300mm min. above the conduits.

Only selected backfill shall be used and shall be compacted in layers not exceeding 200mm to a density of 90%. Compaction Standard achieving a standard penetrometer reading of 8 min blows per 300mm. The minimum cover shall be in accordance with AS 3000 and in any case, not less than 600 mm to top of conduit. Concrete cover to conduits to a lesser depth will be allowed only after written approval from the Manager, Electrical Services.

Minimum size of underground conduit shall be 32mm. Underground cable shall be PVC/PVC cable, not less than 2.5mm².

Underground cable joints are not acceptable on sub mains. Maximum distance between pits on underground cable runs shall be 60m.

All underground pits shall have their lids marked indicating the service installed and pits shall be adequately drained.

All cable passing through pit shall be permanently tagged to approval indicating point of origin and termination.

Provide clearance between services as required by relevant Acts, Regulations.

All underground electrical services are to be laid in straight, direct lines.

All external cable Pits are to be trafficable.

31.21 **Substations**

Where required, provide new substation, new boundary switch room or modify existing substations as required.

Electrical feed to be a ring main type system to new buildings.
Allow for new switchboards, transformers, switchgear as required. Substations to be 2 hour fire rated and comply with requirements of Western Power and AS 3000.

Transformer size to be determined and to be part of the contract.

Provide spare FCUs for future use.

All high voltage switching shall be performed by Western Power trained staff having the required certification. No work shall commence on high voltage network without an Access Permit in place and signed by all parties who will be carrying out the works.

Where any high voltage cable is to be cut, altered or moved, the Contractor shall arrange with the Consultant and Manager, Electrical Services to test and mark the cable to ensure that it is the correct cable and that it is not “live” before work commences.

Once the cable is proved DEAD it shall be “Spiked” with the approved equipment before any work is commenced.

All work shall be checked and tested as appropriate before the switching is carried out. Final approval for energising of a new substation lies with the supply authority. No switching shall be carried out without their approval.

The Contractor shall meet all costs associated with switching and commissioning.

31.22 As Constructed Documentation and Manuals
Consultant approved “as constructed” documentation shall be submitted, in manuals, prior to practical completion and shall cover all electrical services. These manuals shall include but not be limited to the following:

- Complete set of “As Constructed” hard copy drawings and disks (complying with ECU requirements-Autocad and REVIT format)
- Shall include dimensioned and surveyed location of items as well as full details on services installed.
- Details on all equipment and appliances.
- Equipment or plant operational instructions.
- Maintenance literature for all equipment and appliance including spare parts listings.
- Equipment supplier’s details.
- Commissioning figures including all electrical test readings, lighting levels achieved, fire alarm audible levels on room by room basis for EWIS, complete set of fire alarm tests, earth loop impedance figures, Harmonic Analyse, all three phase are balanced within Plus or Minus ten percent, etc.

Manuals to be provided as 2 hard copy sets and one complete manual in electronic form.

31.23 Regulatory Authority Notices
For all electrical installation work Electrical contractor shall submit a Minor Works or a Preliminary and Completion Notice to the supply authority and at the same time a copy to the Manager, Electrical Services.

Contractors shall also complete an entry in the campus site electrical record book detailing:
- the location and nature of works;
- the number of the notice;
- Contractor’s name, name of person carrying out work and their license number.
Any Electrical Work and or equipment that does not conform to these Planning and Design Guidelines shall be removed and reinstated to the appropriate standard, at the Contractors expense.

31.24 Auto Doors

(a) **Operator**

Operators for auto doors to be Dorma EL301 and be complete with:-
- Separate entry exit sensors.
- Electric constant rated stall proof capacitor start squirrel cage motor.
- Battery back-up for a minimum 300 operations.
- Photo-electric cells across doorway.
- Controls to be interfaced with the buildings Fire Alarm and Security access control systems.
- Switches and push buttons shall be mounted 900mm above finished floor level.

(b) **Operation**

Normal Hours
The doors shall allow free access and exit via local movement sensors.
Close after time delay
Fire Alarm condition – Doors operate as normal.

After Hours
The doors shall be controlled via the Security access system. Only a valid card holder is permitted.
Exit via Exit push button or in secure areas via a card reader with a back-up break glass. Close after time delay.
Fire Alarm condition – Doors open and remain open until the fire alarm is reset.

(c) **Request to Exit Button**

The request to Exit (EX) push button shall be momentary bell press switch. The push button shall be a Clipsal prestige series P30MBP or equivalent in the same orientation to other fittings.
The push button shall be engraved in red “PUSH TO EXIT in capital letters a minimum of 8mm in height and centrally located above the button. All “End of Line Resistors” shall be located on the rear of each plate and securely fixed.

(d) **Key Switch**

Dorma key switch is SK. Allow to replace lock barrel with ECU Lockwood standard barrel 245K.

32. Communications

32.1 Generally

Contractors

Any work carried out on the University Communications cabling and systems can only be done by contractors approved by the ECU Manager IT Infrastructure Services.
ACA Specifications, Approval and Australian Standards

This work shall be carried out strictly in accordance with the current ACA specifications and appropriate Australian Standards by an appropriately registered cabling contractor. The cabling installation shall comply with the current issue of AS3080, "Integrated Communications Cabling Systems for Commercial Premises", unless this brief specifies otherwise.

Equipment to be Provided

The cabling contractor to supply and install data/telephone cabling system complete with all equipment racks (unless directed otherwise), patch panels, terminal blocks, connectors, cables, patch leads, records, jumpers, accessories and consumables. All projects shall be ACA approved and clearly marked as such. Cabling Contractor to install conduits and wiring access for facility cabling. All cable trays and supports for block wiring shall be supplied and installed by contractor.

Telephone/Data Backbone Cabling

Telephone and data backbone cabling shall be included in the contract.

Telephone Handsets and Final Connection

Telephone handsets will be supplied and installed by the University. Final connection of the telephone i.e. jumpering on the IDF/MDF and connection of the patch lead in the Communications Cupboard/Room shall be carried out by the University.

Earthing

Provide a complete earthing system to ACA approval for telephone and data distribution system, including connection to the main earth.

Locks and Handles

All locks on Communications Rooms and Cupboards shall use an "AS2" cylinder in the University's standard lock series unless otherwise specified. Doors shall only be able to be opened with a key and be self-locking on closing, but shall have a handle on the inside or be arranged to prevent persons being trapped. Doors shall open outwards and shall have a fixed handle on the outside.

32.2 Cabling Provisions

(a) General

Provide for communications cable distribution by the use of either two or three channel skirting duct mounted either at skirting level or bench height depending on application. In staff offices the ducting is to be at skirting level. Ensure duct has adequate conduit entries for cabling requirements.

Provide a detailed block diagram for each building specifying:
- Cable type
- Outlet type
- Origin
Destination
Termination connection points/Number off

Provide lightning surge diverters to data/telecommunications lines.

All cabling to be as per ACA TS 102-1998 (Australian Communications Authority Technical Standard Customer Equipment and Cabling) and the other applicable Australian Standards. All cabling contractors shall be registered with the ACA as accredited registrar.

(b) Site Cabling

Special Services Cable
Provide special services cabling in conduits between the building’s main data frame and the Special Services Frame in each building. Terminate on Krone frames at each end.

Fibre Optic Cable
Specification for fibre optic cabling to be determined by the ECU Manager IT Infrastructure Services. Leave a five (5) metre loop of cable at each end for future connection by the University.

Where fibre optic cables pass through underground cable pits provide cable loop (≈ 300 dia) and cable tie to prevent loop uncoiling. Indelibly label all underground cables within pits clearly noting where the cable originates, type of cable and where it terminates.

Cabling Requirements
Check with the ECU Manager IT Infrastructure Services for exact requirements of data cabling as requirements may vary from one project to another.

All copper cabling entering a building shall be provided with line protector surge arrester units at both MDF and IDF ends, Critec SLP 10-K4 or equal approved to TS009.

32.3 Detailed Requirements

(a) Server Room

Server rooms are critical infrastructure. Brief for design must be approved by the ECU Manager IT Infrastructure Services. In general the following to be considered:
- Heat loads of equipment to be accurately determined.
- Plan for heat dissipation must be based on a clear understanding of air flow.
- Power supply to be uninterruptible.
- Air conditioning systems to be fully backed up.
- Facility to be fire protected and include a fire suppression system.
- Facility to be secure and have access control.
- A risk assessment to be prepared and signed off by the ECU Manager IT Infrastructure Services
- Access for delivery and installation of equipment.

(b) Communications Room

General

Each building shall have at least one Communications Room, preferably centrally located
on the ground floor, to securely house equipment to provide communications and computing services for general use in the building. The Communications Room is the hub for the communications wiring for the building and shall be directly connected to the underground service duct network.

The room shall be sized to accommodate a minimum of 2 APC Net shelter type racks with adequate space to install and service equipment. Details of the layout to be confirmed with the ECU Manager IT Infrastructure Services. Floor covering shall be anti-static vinyl and room to be dust free.

Environment

The room shall preferably not have any windows, but must be air conditioned to specifications supplied by the ECU Manager IT Infrastructure Services. Generally:

- To dissipate equipment heat loads.
- Full back up.

Electrical Requirements.

Room lighting shall be provided. Equipment power supply to be uninterruptible. Unless otherwise directed, UPS to of Emerson Network Power manufacture. System to have the ability to monitor power consumption both at the UPS and at each individual rack (metered power rail).

Ducting Requirements

All ducts shall enter the room adjacent to the communications rack. The room shall be directly connected to the underground communications duct network by at least two 100mm ducts in each direction. The rooms shall be connected to building communications cupboards by ducts with easy access for future modification of cable infrastructure.

(c) Communications Cupboards

General

Each cupboard shall be sized to accommodate 2 of 19 inch racks with adequate space for the installation and servicing of equipment.

There shall be at least one Communications Cupboard on each floor from which there shall be access by conduit or via the ceiling space to run cable to all rooms on the floor. Cupboards shall be vertically aligned one above the other.

The cabling run from any outlet to a communications rack shall not exceed 90m. No Communications cupboard shall be more than 180m wiring run from the Communications Room. Additional Communications cupboards and rooms shall be provided, where necessary, to ensure that these lengths are not exceeded. Specification of cable links between cupboards and Communications Room to be determined by the Manager IT Infrastructure Services.
Environment

Equipment heat loads to be determined and appropriate solution for the dissipation of heat determined. At a minimum cupboard to be provided with an exhaust system triggered by an over temperature alarm.

Cupboards to be dust free and include finished ceiling and sealed floor.

Electrical Requirements

Internal lighting shall be provided. There shall be a double socket outlet adjacent to each rack. Power to each rack is to be provided with a Power Clean LF-8 horizontal power rail having 8 outlets, fixed horizontally on the middle of each rack.

Power outlets in riser/cupboards shall be supplied directly from UPS installed in Main Communications Room.
Ducting Requirements

Where there is more than one floor, cupboards shall be vertically interconnected by conduits or wiring access with the equivalent space of not less than three 150mm conduits.

Where more than one cupboard is provided on the same floor, cupboards shall be horizontally interconnected by conduits or wiring access with the equivalent space of not less than two 100mm conduits.

Where additional cupboards are provided on the same floor as the Communications Room, the cupboards shall be horizontally interconnected by conduits or wiring access with the equivalent space of not less than three 150mm conduits.

(d) Outlets at the Workplace

All outlets shall be provided in sets consisting of 2 RJ45 terminated CAT6aUTP cabling. These outlets shall be assumed to be one for data and one spare; each set of outlets shall have an adjacent double GPO unless specified otherwise.

Outlets other than those for workstations will be project specific and are to be individually determined.

32.4 Facility Cabling and Patch Leads

(a) Cabling to Outlets

Provide the appropriate number of Krone Highway 32 panels (or equivalent) on the rack and an RJ45 termination per wall outlet. Copper cabling shall be category 6aUTP cable from each RJ45 outlet located around the building in accordance with the plan. Outgoing cables shall be installed in conduit or in the ceiling space and dropped down to the skirting ducts at suitable locations. Termination of wires at the outlets shall use the pin/pair assignments specified in AS3080 Section 6.3 and Figure 3 as TS568A.

Colour code shall be as specified in AS3080 para. 6.2 and Table 2; for clarity this is shown in Table 10 below:

<table>
<thead>
<tr>
<th>RJ45 Pin</th>
<th>Pair Colour (base/band)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>White/Green</td>
</tr>
<tr>
<td>2</td>
<td>Green/White</td>
</tr>
<tr>
<td>3</td>
<td>White/Orange</td>
</tr>
<tr>
<td>4</td>
<td>Blue/White</td>
</tr>
<tr>
<td>5</td>
<td>White/Blue</td>
</tr>
<tr>
<td>6</td>
<td>Orange/White</td>
</tr>
<tr>
<td>7</td>
<td>White/Brown</td>
</tr>
<tr>
<td>8</td>
<td>Brown/White</td>
</tr>
</tbody>
</table>
Data and VoIP Patch Leads

For each data outlet provide one 3 metre lead for the connection from the wall outlet to a computer, one 2 metre lead for patching (unless required to be longer because of the size of the patch field) and one 1.5 metre lead for patching from VoIP Telephone to computer. All patch leads to be of Molex manufacture, certified UTP category 6a with appropriate ACA approval. All leads to be left unconnected in the appropriate Communications Room/Cupboards at the completion of the contract. Length of leads may vary due to location on rack, hence length of leads to be discussed with The Manager, IT Infrastructure (IT Services Centre) prior to manufacture of leads.

Analogue Telephone Patch Leads

For each analogue telephone outlet provide one 2 metre white Cat 6a lead due to the backbone cable terminating on 50pr voice panels. (Unless required to be longer because of the size of the patch field). All leads to be left unconnected in the appropriate Communications Room/Cupboards at the completion of the contract. Provide one 3 metre lead for the connection from the wall outlet to a phone. This lead to have a RJ45 connector on one end and a RJ12 on the other.

(b) Data Distribution Cabling

Patch Panels

Provide a data distribution panel on the equipment rack below the facility patch panel in each Communications Cupboard and Communications Room and fit with one RJ45 data connector per data distribution cable.

Data Distribution Cabling

Provide additional cables between the Communications Cupboards and the Communications Room and provide additional cables between Communication Cupboards as specified, by Manager, IT Infrastructure (IT Services Centre).

(c) Telephone Distribution and Backbone Cabling

Intermediate Distribution Frame

On one of the racks in the Communications Room, mount the required number of 100 pair Krone terminal blocks to provide backbone cabling to the campus Main Distribution Frame (MDF) and distribution cabling to each Communications Cupboard that is fitted with a "Telephone" block. Mark the backbone block "Telephone Backbone". Mark the distribution blocks "Telephone CCXX", where CCXX is the Patch Panel identification in the appropriate Communications Cupboard as specified in Paragraph 17.8. Blocks to be electrically insulated from the rack in accordance with ACA specifications. Refer Clause 17.10 diagram for location of Krone terminal blocks on the rack.

Final Distribution Frame

Mount the required number of 50 pair Krone terminal blocks on one of the racks in each Communications Cupboard or Room as required for telephone distribution cabling. Mark the blocks "Telephone". Blocks to be electrically insulated from the rack in accordance
with ACA specifications. Refer Clause 17.10 diagram for location of Krone terminal blocks on the rack.

Telephone Distribution Cabling

Install a suitable size telephone pair cable from "Telephone" terminal blocks located in the equipment rack in each Communications Cupboard to the appropriate "Telephone CCXX" terminal block located in the equipment rack in the Communications Room.

Telephone Backbone Cabling

Mount the required number of 50 pair Krone terminal blocks and any associated hardware on the campus MDF in the PABX room. Location on the MDF to be agreed with the University Telecommunications Officer. Install a suitable size telephone pair cable from "Telephone Backbone" terminal blocks located in the equipment rack in the Communications Room to the terminal blocks on the MDF.

Telephone Jumpering

Jumpering to be provided in the Communications Room between the "Telephone Backbone" terminal blocks and the "Telephone CCXX" distribution terminal blocks.

32.5 **Labelling and Documentation**

Labelling

Outlets on the patch panel shall be identified using the following convention:

PP « Patch Panel »-P« Panel »-« Outlet » e.g. PP25-P2-10

The Patch Panel number to be obtained from the Senior Voice Communications Officer, IT Infrastructure (IT Services Centre). Number the Panels downwards from the top. Number the outlets from the top left hand of the panel across then downwards. On the Patch panel: label the top of the patch panel with the Patch Panel number; label each panel with its panel number; label each outlet with the outlet number. All labels to be engraved lettering on traffolyte hard plastic strip or a suitable alternative approved by IT Infrastructure (IT Services Centre). Labels to be permanently attached to the panel.

Label each combined wall outlets with the full identification of the corresponding patch panel outlet.

Patch Panel Documentation

Documentation to be provided at each Patch Panel using a form supplied by the Senior Voice Communications Officer.

Provide a CAD plan to the University Project Manager with a copy to the Manager, IT Infrastructure (IT Services Centre), of the building with the full identification marked on the plan against each wall outlet.

Three hard copies of the documentation shall be provided. One shall be placed in a clear A4 plastic envelope to be provided and secured to the rack. One copy shall be provided to the Senior Voice Communications Officer, IT Infrastructure (IT Services Centre) and one copy shall be provided to the University Project Manager.
As Constructed Plans

Contractors shall provide CAD presentation of information on building and site plan disks to be provided by the University, the following "as constructed" information:

- Exact location, number off, and identification (specified in 17.8 above) for each wall outlet.
- An indication of the route between outlets and the communications room/cupboards.
- The route of any cable runs between communications cupboards and to the communications room where these are not vertically one above the other.
- For any cabling exterior to a building, the type of cable, the exact route taken, the method of construction, e.g. overhead, in duct or direct buried, and if ducted, which duct bores used.

"As constructed" plans in CAD and hard drawing format shall be available when the installation is inspected and shall be submitted to the University Project Manager on completion of the work.

32.6 Acceptance, Testing Certification and Warranties

Acceptance

On completion of the installation of the Voice/Data Cabling System check test all Voice/Data Cabling System outlets and confirm that the equipment has been installed and interconnected in accordance with the Specification and drawings and that the specified performance is achieved.

Testing of all UTP cabling shall be carried out using Level 3 handheld testers Omniscanner 3, HP wirescope, Philips fluke DSP4000 or equal approved, complete with system compatible test probe/s.

All UTP cabling shall be tested and be compliant to TIA EIA 568 Draft 6 Category 6a specifications and retested and be compliant to ISO/IEC 11801 Category 5 (enhanced).

Provide both Channel and component Cat 6a and 5E compliant test results.

Test all UTP cable pairs and check for:

- Continuity;
- Correct Sequence;
- Reversed Pairs;
- Transpositions;
- Split Pairs;
- Pin Assignments;
- DC resistance and continuity for each pair;
- Return Loss (must meet the Category 6a (enhanced) minimum requirement);
- Capacitance for each pair;
- Active ACR;
- Compliance to ISO/IEC 11801 Category 5E (pass or fail) utilising Cat 6a patch leads.
- Compliance to TIA/EIA 568 Draft 6 Category 6a (pass or fail)
Test all outlets for compliance utilising Cat 6a.

Testing of all multimode fibre optic cabling shall be carried out using Optical Light Loss testing except where cables are installed such that the installer has no visual confirmation of the cable route or optical light loss test are in excess of the recommended losses. In these situations Optical Time Domain Reflectometer testing shall be carried out.

Testing of all single mode fibre optic cabling shall be carried out using Optical Time Domain reflectometry.

Test all fibre optic cabling and check for:

- End to end continuity.
- Correct core sequence at both ends (White-White, Blue-Blue, etc.).
- Cable free from kinks and strain.
- Cable has sufficient clearances at bends.
- Cable has been supported to manufacturer’s recommendation and specified.
- Cable jacket maintained as close to the point of termination as possible, within the termination unit (box, tray, etc.).
- Through Couplers are secure in termination units.
- Connectors are standards compliant and free from discrepancies, prior to termination.
- Cable has been properly stripped and prepared, all jelly cleaned from the cores, all supports removed from the inner tube, and the cores cleaned and freed from grease oils and any other impediments.
- Light losses at both ends of the terminated cable. This test must be conducted from both ends, i.e. test all cores from end ‘A-B’. Then test all cores from ‘B-A’. Results must be recorded for each test sequence.
- Losses must not exceed 3.0Db for the overall length of each individual core and 2 connectors.

Provide a ‘Drum Test Certificate’ for all fibre optic cabling from the cable supplier to prove continuity and quality assurance of the unreeled cable.

Sufficient advance notice of testing is required to allow for the witness of tests. Complete all tests prior to Practical Completion.

All cables failing specified testing shall be replaced at no cost to the contract. Submit two disk copies of test results.

Certification and Guarantees

Provide a performance certification and guarantee on all installed cables and connectors. The guarantee shall confirm satisfactory operation of the cabling system for the application.

The complete voice/data cabling system shall have a minimum warranty of ten (10) years, with respect to all components of the system, from the time of practical completion.

Acceptance of the installation is conditional upon testing and certification as specified below and the telephone work being inspected and tested by ACA and a Certificate of Acceptance being issued by ACA. Acceptance of the installation is also conditional upon the work being inspected by the Communication Branch of Information Technology Division of Edith Cowan University and completed to their satisfaction.
33. Media Services

33.1 General

Media services and the manner that media is employed for teaching is a rapidly changing environment. Standards therefore will be established on a project specific basis.

Designers should be aware that provision for media should be grounded on education and information need. Very broadly media services consist of display systems and audio systems. In some situations these systems have to work in conjunction with whiteboards. Location of display system and controls must take into consideration size of facility and the manner in which the facility is to be used.

Trailing cables which result in trip hazards are to be avoided.

In general media services are user driven with minimal support, user friendliness is an imperative. In situations such as general teaching area and bookable meeting spaces help is provided via telephone. Ensure a telephone outlet is provided for these facilities.

33.2 Contractors and Equipment

Any work carried out on University Media Services can only be done by contractors approved by the ECU Manager IT Support Services.

All equipment and cabling specification used must be approved by the ECU Manager IT Support Services.

33.3 Antennae

In general all buildings are to be fitted with a free to air antennae system with the ability to connect at each floor provided in nominated communications cupboards.

33.4 Security of Equipment

All media hardware to be provided with adequate physical security – padlocked cages for projectors; lockable tethers for LCD screens; lockable cupboards for equipment etc.

In designing lockable cupboards for equipment consideration to be given to the need for access to DVD and VCR drives. In general equipment to be housed in racks specifically designed for the purpose. Housing for equipment to allow for the dissipation of heat generated by the equipment.

33.5 Media Installations

(a) Student Information Screens

Standard
- LCD screen on appropriate wall or ceiling bracket
- Starbak Display Engine

Alternative
- LCD screen or screens
- PC to provide video feed to screens
(b) **Standard Install Meeting/ Conference Rooms**

Standard:
- JED AV control device
- Lap top plate
- Ceiling mounted projector
- Motorised drop down screen
- DVD/ VCR combo mounted in an equipment rack
- Powered Speakers

Optional:
- TV antenna point
- Video conferencing facility

(c) **Computer and Teaching Labs**

Standard:
- JED AV control device.
- Lap top plate
- Ceiling mounted projector
- Motorised drop down screen
- DVD/ VCR combo mounted in an equipment rack
- Powered Speakers.

Optional:
- Additional display devices

(d) **Specific Need**

To be determined on a project basis with the support of the ECU Manager IT Support Services.

33.6 Flexi Lecture

Flexi Lecture is the ECU system for the video and audio capture of Lectures and the streaming of this captured information to students via the Web.

The system has variants ranging from full video and audio capture with video conferencing facility to audio capture only.

This facility can only be provided with the approval of the ECU Manager IT Support Services. Detailed specification and selection of contractors qualified to carry out installation to be approved by the ECU Manager IT Support Services.

33.7 Media Services Help

All rooms containing multimedia equipment are to be provided with a telephone point configured for direct connection to security and MMR help.
34. **Fire Services**

ECU – Standard for Fire Indicator Panels and Fire Plans

FIB display – e.g.
Top Line – Bldg. 4 Level 2 West Zone 5
Bottom Line – Zone 5 Loop 3 S24

Fire Plans
- Must be colour.
- Show each Zone in different colours (same colours can be used on a different floor).
- Fixed to wall and laminated.
- Minimum size – A3.
- Electronic version .DWG to be provided.
- Fire plans to be updated to reflect changes to internal office areas.

Password – 3333

34.1 **General**

Each building shall be provided with a system of fire protection in accordance with relevant codes and standards. Each individual system shall be designed and installed in such a way as to guarantee the maximum insurance rebate allowable for that system.

The Project Architect shall consult with the Fire Brigade at the earliest possible stage in the design process so that the Fire Brigade’s requirements are met and delays will not be experienced at the building occupation stage.

This section of the Engineering Standards outlines the University's minimum requirements for the following types of Fire Protection Systems:

- Automatic Fire Alarms.
- Hydrants and Hose Reels.
- Hand Extinguishers.
- Automatic Fire Sprinklers.
- Special Systems as required e.g. gas extinguishing systems, high velocity water sprays.
- Lightning surge diverter protection required to fire alarm lines.

Note code requirement for Public Building exhaust to outside air in event of fire.

34.2 **Preferred Contractors**
Contractors either tendering or working on projects at Edith Cowan University must be approved by the manager Electrical Services.

34.3 **Fire Alarms**

(a) **General**

Generally, a fire alarm system is required to all buildings with independent FIBs connected back to the main site FIB and to the Fire Brigade. This requirement also applies to refurbished buildings.
All fire alarm systems shall be provided with a fire plan drawing adjacent to the fire panel. The drawing shall be to scale and of a size that can be easily read from 1m away. Any alterations to the building or fire system to be recorded on the fire plan.

Fire panels to be changed to show new or additional room numbers.

(b) Emergency Warning and Intercommunications Systems (EWIS)

For each project, an Emergency Warning and Intercommunications system shall be installed subject to funds being available.

The system shall be in accordance with AS 2220.1 and .2 "Engineering Warning and Intercommunications Systems for Buildings". The EWIS panel shall be located next to the fire indicator board in the entry foyer and connected to every warden intercom point and to be a system for distributed loudspeakers on every level. The EWIS system shall be activated to the alert mode on the occurrence of all or any of the following:

Activation manual call point
Activation of smoke/thermal detector.

Facility such that the operator can override the system and include any of the following functions to all or any part of the building by using one specific button for each function:

Alert tone
Evacuate tone
Public address systems.

The EWIS panel shall have illuminated push/hold and push/release button for each intercom point on every level of the building.

Intercom points shall be installed in the immediate vicinity of the fire stair exit and in all fire hose reel cupboards.

On commissioning, sound level readings shall be taken for all rooms including plant and associated areas. A minimum sound level shall be attained for each room of 75Db. Note strobe lights to be used in conjunction with audible alarms in areas with equipment which require occupants to use hearing protection.

34.4 Automatic Fire Alarms

(a) General

In general all buildings shall be equipped with automatic fire alarms connected via the building's Fire Indicator Board, to the local Fire Brigade.

(b) Detection

In general the buildings shall be protected with ceiling mounted smoke detectors and thermal alarms in ceiling spaces or harsh environments in accordance with the requirements of AS 1670, Automatic Fire Detection and Fire Alarms.

Thermal alarms shall be of the electro-pneumatic, compensating rate of rise type.
Thermo-pile and solid state alarms are also acceptable. Detectors shall be in accordance with the requirements of AS 1603.

Smoke detectors (combustion type) should be used where early warning is required in areas such as sub-stations, switch rooms, P.A.B.X. and M.D.F. rooms.

Smoke detectors (obscuration type) should be used in air-conditioning systems in supply and return air systems to comply with the requirements of AS 1668 - Part 1 - 1979 Fire Precautions in Buildings with Air Handling Systems.

Consideration should be given to an intermixing of smoke detectors of both types in areas such as computer rooms or rooms containing sophisticated electronic equipment particularly where air movement is considerably high. All detectors shall be provided with neon or L.E.D. indicating lamps.

Note: Break glass alarms are also required in all laboratory areas, corridors and foyers. Concealed space detectors shall be equipped with remote neon or L.E.D. indicators labelled with the type and location of the detector.

(c) **Sub Fire Indicator Board**

Each building shall be equipped with its own Fire Indicator Board showing all alarm circuits. Allow on each Sub Fire Indicator Board a minimum of 25% spare space. A maximum of 30 thermals or 15 smoke detectors shall be provided on any circuit.

It is essential that all fire indicator panels on each campus be configured identically. Unless otherwise directed fire panels to be Ampac Fire finder fully addressable analogue type.

The building shall be connected via the Special Services Cable to the Site Fire Indicator Board/Fire Alarm Multiplexers from which an alarm will be transmitted to the Brigade. Provision shall be made for all connections fees etc. and modifications necessary to the site plan forming part of the Site Fire Indicator Board. Each F.I.B. shall also be linked via a DGP point in the building to indicate an alarm on the BMS.

Fire Indicator Boards shall be placed in a position easily accessible to the Fire Brigade from vehicular access and the position of the F.I.B. should be checked at documentation stage with the relevant parties. The University has generally standardised on F.I.Bs being located behind an unlocked door sign written in accordance with the code. Signs on the doors are provided by the University.

All to the requirements of AS1603 "Control Indicating Equipment".

34.5 Hydrants and Hose Reels

Hydrants are to be provided to serve all buildings in accordance with the BCA and appropriate Australian Standards. In General each level of a building shall have sufficient unequipped Brigade landing valves such that no portion of that level is more than 30m from a hydrant. Hose reels should be placed at or adjacent each hydrant and should be a minimum of 36m x 20mm I.D. hose. Hydrant systems shall be designed to provide water within the range of pressures specified by the BCA and Australian Standards. Brigade booster connections, if required, shall be provided in accessible locations for all buildings. Pumps shall be provided if required to meet design pressure. The system is to be subject to a Fire Brigade test for approval.
Provide signs (coiled hose reel design) mounted at right angles to the wall to signify location of hose reels and hydrants.

Fire hose reel nozzles, etc., to comply with the following:

- Hose reel gate valve must lock end of hose nozzle to hose reel and retain it in that position when not being used.

- To permit hose nozzle to be detached from hose reel gate valve, the gate valve must be released which will at the same time allow water to flow into the hose. When the hose is unravelled and taken to the fire, water is released upon turning on of the hose nozzle.

- Hose reel cupboard doors to be painted a distinctive colour which is different to all the other doors.

- Consultants are to organise formal certification from the Fire Brigade that location of units and operation of system is in accordance with Regulations.

34.6 Fire Extinguishers

Fire extinguishers shall be provided to all areas in accordance with Fire Services requirements. In general the following extinguishers should be used for standardisation and shall be provided under the contract:

- **General office areas**: 2kg carbon dioxide extinguishers to be located in reception or office areas where photocopiers, facsimile machines, multiple computers occur.

- **Cooking areas**: 4.5kg dry chemical powder (B.E. Powder) extinguisher plus blanket 1200 x 1800

- **Switchboards and/or Transformer rooms**: Carbon dioxide or dry chemical (4.5kg)

- **Laboratories**: Carbon dioxide (4.5kg) plus Dry chemical (4.5kg) and 1200 x 1800mm fire blanket

- **Computer rooms**: 3.4kg carbon dioxide

- **Computer laboratories**: 3.4kg carbon dioxide

- **Plantrooms**: Carbon dioxide (4.5kg) and dry chemical (4.5kg)

- **Student Housing kitchens**: Dry chemical (2.5kg) and fire blanket

Floor area per extinguisher to be as follows:

- **Water extinguishers**: Offices, teaching area, assembly halls 300m²
- **Display areas, workshops**: Bulk storage areas, woodworking areas, processing areas 200m²
- **Chemical extinguishers**: Refer AS 2444

 Generally, in the office or laboratory situation where flammable liquid containers not exceeding 5 litres (total not exceeding 25 litres in the areas) provide 1 extinguisher per 80m² each within 15 metres walking distance.
Other extinguishers should be used where the risk so demands. All extinguishers shall be provided with coded location signs and usage signs in accordance with the requirements of AS 1851 - Part 1 - 1989, (maintenance code) and AS 1841 - 1850 as applicable.

Maximum size of extinguisher (excluding water storage type) is to be 4.5kg and minimum size to be 2.2kg.

In general only extinguishers approved by the SAA will be acceptable.

Extinguishers which require inversion for operation shall not be specified.

Extinguishers shall be installed in accordance with the requirements of the Fire Brigade, installed at a height of 1000mm above floor level and in accordance with the requirements of AS 2444 (Portable Fire Extinguishers - Selection and location).

Provide signs at right angles to the wall to signify location of fire extinguishers.

Maximum walking distance between water extinguishers to be 15 metres.

Where deep fryers are installed, extinguisher to be located next to exit from the room.

Carbon dioxide, foam and dry chemical extinguishers are preferred for flammable liquid fires (BCF is deprecated for this purpose on environmental grounds).

Water extinguishers are not to be used on fires associated with electricity/electrical equipment nor on flammable liquids.

Foam extinguishers, being water based, are not suitable for use on electrical equipment.

34.7 Fire Blankets

In kitchenettes and cooking areas and laboratories, provide and install under the contract a 1200mm x 1800mm fire blanket.

34.8 Automatic Fire Sprinklers

Sprinklers must be installed in areas where required by Australian Standards, building codes or Authority requirements. Refer to AS 2118, etc. In general, any area should be considered individually and a proposal for Sprinkler Protection should be discussed with the University prior to documentation.

34.9 Special Systems

In certain applications consideration may be given to special systems such as:

- BCF, carbon dioxide, BTM gas extinguishment systems.
- High velocity water spray systems.
- High expansion foam systems.
- Tail end dry pipe.
- Pre-action systems.
Any proposal for any of the above systems should be discussed with the Project Manager Buildings prior to documentation.

34.10 Diagram of Exits

Provide a permanent engraved floor plan letter cut vinyl behind perspex cover set off face of and fixed to the wall on each level showing location of exits. Allow also for similar sign of campus showing fire assembly points for campus including for new building.

35. Security Services

35.1 General

(a) Preferred Contractors

Contractors either tendering or working on projects at Edith Cowan University must be approved by the Manager Security Services.

Security Consultant/Lead Consultant to develop a comprehensive Security Management Plan in conjunction with ECU Manager Security Services, ECU Project Manager and relevant Campus Manager.

Security Plan to:
- Provide access control all to ground level access points thereby securing the perimeter.
- Compartmentalise building into manageable portions and allow for access control to these portions.
- Identify any security risks and provide access control to these areas.
- provide access control to any area or room which would require the issue of more than 6 keys.

(b) Preamble

Designers interpreting these guidelines are to understand that changes to technology and policy may outpace the content of these guidelines. Prior to calling of tenders for any work related to ECU Security the following must be approved by the Manager Security Services:
- Access control/ security management plan. Plan must clearly indicate strategy for prevention of unauthorised entry and the access paths for users who would enjoy access to defined areas only.
- Schedule of equipment. Door locking devices; door closing devices; card readers; control buttons; CCTV cameras and enclosures, Network Video Recorders (NVR’s).
- Location and type of security phones.
- Schematic wiring diagrams and cable specification.
- List of potential tenderers for access control.
- List of potential tenderers for video surveillance.

All facilities that require 24 hour access and contain equipment of high value must be provided with CCTV surveillance and access control. Rooms or areas which would require controlled access for a large number of people are to be provided with access control.
(c) Equipment to be Provided

The security contractor is to supply and install the security system complete with all cabling, documentation, operational equipment, required software, fittings, finishing, and appropriate connection to existing systems. Consultants and contractors shall abide by the relevant legislation and Australian Standards. The security contractor is to install all necessary conduits and wiring access for facility cabling.

(d) Systems Integration

All electronic security systems shall be fully integrated through the utilisation of the existing Gallagher system, and CCTV digital surveillance network. The Gallagher system’s primary function is to integrate all access control systems, intrusion alarm systems, future security systems and future Intelligent Building Systems. The ISMS and the digital surveillance systems communicate with sub-systems and field equipment over the existing Security Systems’ Virtual Local Area Network (VLAN).

(e) Licensing

The designers of the University’s security systems shall be licensed security consultants and the employer of the designers must be a licensed security agent. Similarly security installers must be licensed. Copies of the employer’s Security Agent’s licence and the actual designer/specifier’s licence and installers licence shall be forwarded to the University’s Security Manager prior to commencing work. Please note that it is illegal in Western Australia for a company or individual to design, specify, or install security measures without the relevant licence. Unlicensed personal and companies will be barred from security design and installation work at ECU.

35.2 Crime Prevention through Environmental Design (CPTED)

(a) General

The University requires attention towards the environment to complement and enhance the security of the campuses. Crime Prevention Though Environmental Design is an approach to preventing crime where its objective is to improve security by limiting criminal opportunity through the use of natural barriers and natural surveillance. Where possible, the University prefers CPTED to be used in conjunction with traditional electronic, mechanical, and structural crime prevention techniques. When conducting security related work, consideration shall be given to the following:

(b) Territoriality

Territorial reinforcement of an area is the physical design that helps develop a sense of territoriality by the user that produces a perceived risk to an intruder. This shall be achieved through the use of clearly defined perimeters by way of barriers (fences, hedges or rows of trees) and other visual indicators (changes in ground lay material, lighting levels or wide-open spaces). Where applicable, the security designer shall demonstrate territoriality in instances that require the restriction of individuals.
(c) Natural Surveillance

Keeping intruders under observation will result in a higher perception of detection. This shall be achieved by techniques that minimise the opportunities for intruders to conceal themselves and their actions. Large glass windows, well-kept gardens, lighting and wide-open spaces will increase the natural surveillance of an area. The effectiveness of electronic CCTV systems is further increased when natural surveillance techniques are employed. Where applicable, the security designer shall demonstrate natural surveillance particularly in the vicinity of CCTV cameras.

(d) Natural Access Control

The prevention of access to an area and the creation of the perception of detection and increased effort required by an offender constitutes Natural Access Control. Lighting can be employed to control the movements and concentrations of people. Individuals will be attracted to brightly-lit areas at night. Natural Access Control shall be utilised to provide an increased level of safety for authorised individuals.

35.3 Electronic Access Control Systems

All future electronic access control systems shall be compatible with the existing Gallagher access control System. Any technologies used will be compliant with existing standards in use and operated through the University’s Security Systems’ VLAN and contactless cards. The University’s Manager, IT Infrastructure must be consulted to ensure appropriate ports and IP addresses are available for access to the network.

35.4 Electronically Operated Door Locks & Hardware

Unless otherwise approved. Configuration of hardware to be restricted to the following:

Auto Door – Card Reader, auto door interface card, door release and break glass.

Swing Door – Electric Lock, card reader, reed switch, DOTL and door sounder.

(a) Electro-Mechanical Mortise Locks

Unless otherwise specified, all new doors requiring electronic access control shall be fitted with electro-mechanical mortise locks from the Lockwood 3570 series, configured for fail safe but with an internal free handle to allow egress; and external locked handle for entry. Mechanical key override is not required for electric locks.

Door furniture shall be from the Lockwood 3580 series and the handles shall be model number 1070 with a square end and radius corners.

A “request to exit” push button is required for exit. A break glass is required for emergency egress.

Provision of door sounder to be confirmed.

Purpose designed concealed door loops type DL-400, an equivalent approved, shall be utilised and where practicable doors shall be pre-wired for the locks, or wiring channels shall be utilised. The conduits and termination boxes shall be purpose designed for this
application and shall be as small and secure as practicable. General-purpose conduits will not be acceptable.

(b) Electromagnetic Locks

In cases where it is not practicable to install an electric mortise lock (e.g. some existing doors) an electromagnetic lock may be utilised. The holding mechanical force of each electromagnetic lock shall be a minimum of 2000N. Some doors may require 4000N. The designer shall determine the force required and make calculations available to the University’s Security Manager. The lock shall be suitable for installation on glass frame doors where applicable. The contractor shall provide all necessary rigid metal supports to ensure that the locks are secured firmly at all times.

Locks installed below the minimum doorway height specified by the Building Code of Australia or relevant legislation will not be acceptable.

All surface mounted electromagnetic locks shall incorporate a concealed built-in door status sensor.

Doors that are installed with electromagnetic locks shall also be fitted with a mechanical key lock. The mechanical lock shall be installed with a lock cylinder on the insecure side of the door plus a holdback cylinder for retracting the bolt by key operation. While the electromagnetic locks are operational the holdback feature would be in use. However during times when electromagnetic locks are without power, the holdback cylinder on the mechanical lock shall be released by keyholders to allow operation of the mechanical lock as an automatic deadlatching lock. A free handle shall be utilised on the secure side of the door. The handle on the insecure side shall be key lockable. The cylinders shall be keyed to match the existing master key system.

A ‘request to exit” pushbutton is required for egress. A breakglass is required for emergency egress.

(c) Electric Strikes

Electric strikes are not to be used unless the University Project Manager or Security Manager specifically requests this type of locking mechanism on a particular door. Electric strikes shall be from the Padde ES2000 series with compatible mortise locks from the Lockwood 3500 series, or similar, and shall be fail safe.

The cylinder shall be keyed to match the existing master key system. The key override shall be monitored in a manner that generates an alarm at the integrated security management system (e.g. using a tongue sensor in the strike).

A ‘request to exit” pushbutton is required for egress. A breakglass is required for emergency egress.

(d) Door Openers and Closers

Where the University Project Manager requires an auto-door opener for a swing door it shall typically be a Dorma ED 200 or equal. All other electrically operated swing doors must be fitted with a good quality hydraulic door closer. The closer should be mounted on the secure side of the door. The closing power shall be sufficient to consistently and
reliably close the door sufficiently for the electric locking device to engage and secure the door.

In the case of an existing door closer, it may need to be replaced to ensure sufficient closing power and it must be located on the secure side of the door.

(e) Reed Switches

Each door controlled by the electronic access control system shall be monitored by a reed switch. Reed switches may be incorporated into the electric locking mechanism. In this case the reed switch must be installed and wired in accordance with the manufacturer’s instructions. If an integral reed switch is not available then a separate reed switch shall be installed at the head of the door and be recess mounted in the door frame. The magnet shall be mounted in the top edge of the door. In the case of an integral reed switch in an electro-mechanical mortise lock, the magnet for the reed switch shall be mounted in the doorframe at the position recommended by the lock manufacturer.

(f) Push/Pull Labels

Where required by the University Project Manager, the door pull plate shall be labelled “PULL” and the door push plate shall be labelled “PUSH”. The labels shall be manufactured from brass with a satin chrome finish and etched with 19mm high letters.

(g) Card Reader Location

All card readers shall be located within the range of access of the card with a minimum of 1cm (10mm) additional clearance to allow for RF interference.

35.5 Card Control

(a) Contactless Smart Card

The access control card shall be a multi-application contactless smart card incorporating MiFare Classic & Mifare DesFire hardware technology. It shall be fully compatible with existing smart cards in use at the University. The smart card must incorporate access control and identification technology, which utilises radio frequency (RF) circuits in microchip form. The microchips shall be encoded and transmit the encoded information when activated. The thickness of the smart card shall be similar to a bank/credit card.

The suitable contactless smart card shall have the following characteristics:

- The smart card shall be capable of operation with any of the existing university smart card readers. It shall be a polycarbonate or PVC based card.
- The smart card shall have the facility to allow direct printing on one surface using the existing card printer.
- Card identification must be consistent with the existing series in use at ECU and must utilise ECU’s existing facility code.
The card shall comply with ISO 14443 for contactless transmissions. For most projects, contact cards are not required. However should there be a specific requirement for contact cards they shall comply with ISO 7816 parts 1-10.

(b) Card Readers

The access control card readers shall be used for access to certain rooms. As a general rule egress readers are not to be utilised. However where the University Project Manager or Security Manager specifically requests an egress reader for a room it shall be similar to an access reader. Card readers shall possess the following minimum features:

- The card readers shall support contactless smart card technologies and be resistant to tampering.
- All card readers shall display at least two separate and distinct visual signals to indicate to the user, whether access is granted or denied and whether the door is locked or unlocked.
- Card readers shall have a built-in antenna providing a read range of at least 5cms.
- Where required by the University Project Manager, card readers shall be of a design that may be hidden behind a panel. Where mounted on dark timber panels, card readers shall have brushed aluminium surround to make them obvious.

Card readers shall be mounted 900m above floor to allow easy access for people standing or sitting in a wheelchair.

(c) Egress Control

Unless otherwise directed by the University Project Manager or the University Security Manager, normal egress control through doors fitted with either automatic opening operation, electromagnetic locks or electric strikes shall be effected by the use of a simple “request to exit” push-button. The push-button shall be black with a white surround and be large enough and conveniently positioned to be operated by persons with disabilities and able-bodied persons.

On doors controlled by automatic opening operation electromagnetic locks and fail-safe electric strikes it will be necessary to install an emergency breakglass release pushbutton on the secure side of the door. This break glass shall be used to disconnect the electrical power to the local fail-safe electric door lock, bypassing the control circuit. The surround for the breakglass shall be white and be suitably labelled. Configuration of break glass on auto doors. If activated external PIR disabled however door to be able to be manually operated. Internal PIR to remain enabled.

Request to exit buttons and emergency egress breakglass buttons shall be mounted at 900m above floor level in a position easily accessible to people standing or sitting in a wheelchair.

In a fire alarm situation the power to electric locks within the alarm zone shall be cut.

(d) Field Controllers Panels

Existing field controller panels shall be utilised wherever possible. If a new field controller is necessary it shall be installed at a position to be approved by the University Project Manager, Security Manager and the Manager IT Infrastructure. The Manager IT
Infrastructure must be consulted to arrange for provision of a suitable port, IP address and connection to the Security Systems VLAN. Field control panels shall only be installed in secure areas. Typically communications cupboards.

35.6 Closed Circuit Television

(a) General

The University is moving away from video based CCTV to a digital internet protocol (IP) system. ECU’s Digital Video System is based on the open Indigo Vision system.

Depending on scale and location of projects, Manager Security Systems will determine what system will be utilised

(b) IP Based System

Network Video Recorders (NVR).

NVRs are to be located in a secure area accessible by security personnel only. NVRs to be Indigo Vision with minimum 6 TB removable hard disk drive. Windows based NVR infrastructure will be considered the standard, with standalone specialised NVR's being available only in specific circumstances.

NVRs shall:
- Utilise a decompression algorithm suited to codec type used by the cameras (MPEG4/H.264)
- Incorporate separate host processors to perform video operations and other necessary options ensuring that video performance is not affected during processor loading, including during playback of stored video streams.
- Where agreed, support analogue inputs and outputs with appropriate interfaces/encoders to enable legacy support for existing devices.
- Incorporate Windows based architecture for incorporation into the existing system and shall include security to prevent hacking.
- Have the capacity for up to 64 devices but shall have a maximum of 20 connected devices to allow storage management and future capacity.
- Be supplied with support for RAID technology.
- Locally and automatically perform disk space management.
- Be fully configurable via the connected network utilising administration credentials.

Movement Detection

The system shall have the ability to detect movement and be programmable to record at a higher resolution when movement is detected. Movement detection shall be performed at source on the host processor to ensure scalability and reliability. The system shall be fully configurable, including five modes of operation, sensitivity and delay time. Any movement detected after hours shall initiate an alarm signal. Alarm information shall activate corresponding camera or cameras to view alarm area or area most relevant to alarm area.
CCTV Cameras and Lenses

Cameras to be capable of industry standard identification (dependant on application) as set out by the UK Home Office CCTV standards. Approved fixed type and shall incorporate a ratified form of video compression being MPEG4/H.264 codec guaranteeing full frame video of minimum 1080p Quality when displayed through the Inigovision head end software.

Lens specification such as focal length, aperture, field of view, to suit particular application and to be confirmed by the Manager Security & Traffic Services or an approved delegate.

Tamper alarms shall be active twenty four hours per day regardless of other timed settings.

(c) Video Based System

NVR to be either;
Windows based indigovision server, or
INDIGO RD1000 enterprise series or newer (latest model).

Where practicable, all DVR infrastructure should be replaced with digital CCTV and NVR technology. When this is infeasible, the existing CCTV workstations and digital video recorders (DVR's) may need software and/or hardware upgrades to accommodate additional cameras. The designer shall determine the specific requirements.

The designer must seek approval from the University Security Manager for the location (and type) of proposed CCTV cameras, DVRs, monitors (where required) and workstations. All camera applications shall comply with the requirements of relevant legislation and be employed in such a way that the opportunity for abuse is minimised.

Cameras and lenses

All CCTV cameras and associated lenses shall be of sufficient quality for commercial application. All applications of cameras within the University shall utilise robust anti-vandal domes. In applications where cameras are facing windows or areas where there is expected to be large differential changes in the ambient light levels dynamic auto adjusting cameras shall be used. In all other installations where the light levels are to be more consistent, the standard High definition cameras will be used.

Where practicable, a guaranteed high degree of night vision is required by all external cameras installed. Technologies such as HikVision DarkFighter (or similar) are to be used to provide the highest possible vision through darkness.

Ensure lighting control is compatible with camera selection. In areas where motion detectors are used to control lights critical lights should not be able to be isolated by the light switch.

Outdoor mounting brackets shall be of a heavy-duty construction suitable for supporting the combined weight of camera, lens and housing. The brackets shall be suitable for wall and/or pole mount applications.
Under no circumstances shall CCTV cameras be installed in either indoor or outdoor applications without an appropriate housing. The final selection for camera housing and mount shall be made with consideration towards the field of view, vandalism/tamper and the prevention of moisture and dust penetration. The final selection must be approved by the University Security Manager.

Recording and Archiving

Where Practicable all images captured from CCTV cameras shall be recorded on a digital video recorder located in the immediate building (typically in a communications room or cupboard). This recorder shall have the function to simultaneously record images from at least 16 cameras and provide playback over the Security Systems’ VLAN.

The connection to the VLAN may only occur after express approval of the University Manager, IT Infrastructure and after the necessary network connection fees have been paid (i.e. port provision plus rack space in existing racks).

NVR storage disk sizes will be consistent with a thirty day retention of all installed cameras with an additional 10% redundancy. All calculations are to be based on maximum frame rates of the approved cameras.

Manual archiving of recorded images will be achieved remotely by way of an existing DVD-RAM backup drive located in the CCTV workstation in the Joondalup campus Security & Traffic Office.

(d) **Housings and Mounts**

All CCTV cameras installed within the University shall be appropriately mounted and contained in housing suitable for the immediate environment.

Housings installed in indoor environments are to be of the plastic dome type. Individuals in the camera's field of view must be able to clearly see the camera through the housing. Unless determined otherwise by the University Security Manager, housings installed in outdoor environments are to be of a weatherproof metal and plastic construction with fitted sunshield. The housing shall be a size that will fit the selected camera and lens with room for necessary cabling.

35.7 **Intrusion Alarm Systems**

(a) **General**

Intrusion alarm systems must only be used for a specific purpose and approved by the Manager Security & Traffic Services. Where possible system must be integrated with the access control system - use of key pads to arm and disarm intrusion alarm system is to be avoided.

Intrusion alarm systems shall be managed by the Gallagher System by way of an existing alarm workstation on each campus and portable devices as applicable. However it is a policy at the university that intrusion alarm systems be monitored by ECU Security via a GSM dialler located in the monitored building which will transmit SMS text messages to 3 nominated ECU security mobile phones. Liaise with ECU Security regarding the phone
numbers. ECU to provide SIM cards for each of the GSM diallers. The design must be approved by the University Security Manager and the Manager of Information Security.

(b) Alarm Devices

The nature of the integrated system shall allow intrusion alarm devices to be either dedicated or incorporated into other security devices. For example, dedicated alarm devices may comprise of volumetric intrusion detectors, and integrated alarm devices may constitute CCTV motion detection.

The University has a preference for Passive Infrared (PIR) detectors for the detection of volumetric movement. The success of these detectors, measured in terms of low false alarm rates and nuisance alarm rates, is dependent on the manner in which the detectors are installed. To maximise the effectiveness of these detectors, consideration shall be given to the following:

- PIR detectors shall not be positioned towards direct sunlight, objects of high temperature or where there is likely to be rapid changes in ambient temperature.
- Where possible, PIR units shall be positioned so that people in the field of view are forced to walk across the face of the unit, instead of towards it.
- PIR detectors shall not be installed in outdoor environments (unless it is a type especially designed for outdoor use).
- Where possible, PIR units shall be installed in a way that they are less vulnerable to tamper and vandalism. This includes the use of tamper alarm circuits.

All alarm cables from the field controller to the alarm device shall be monitored using dual end-of-line resistors. The end-of-line resistors shall be installed in each alarm device housing and configured to sense current and voltage changes on the alarm signal and the tamper signal wires. Any change in voltage or current shall initiate an alarm at the field controller and the operator station.

The University Security Manager reserves the right to reject any design or device that is deemed to be of an inadequate security standard.

35.8 Field Hardware Communications

Field hardware communications between TCP/IP addressable security devices and workstations shall be via the existing Security Systems’ VLAN. The University Manager, IT Infrastructure will make available a reasonable number of Ethernet RJ-45 ports at each campus to enable the connection of the contractor’s equipment to the Security VLAN (typically achieved in a communications room). There is a charge for this connection. Similarly, if the designer proposes to use existing IT rackspace (e.g. for NVRs) then the University’s IT Network Infrastructure Manager will also charge for the space used. The designer should consult with the University Manager, IT Infrastructure to determine the current charges. It is also very important that the designer ensures that IP addresses are made available for access to the Security VLAN. The IP addresses are available from the University Manager, IT Infrastructure.

The contractor shall be responsible for the supply and installation of any additional networking equipment necessary to interface to the security VLAN. The security contractor shall be responsible for all cable terminations necessary to make the security system fully functional.
35.9 Power

(a) Main Power

Unless noted otherwise in the contract documents, the security contractor shall supply and install all necessary power cabling, trunking, circuit breakers and distribution boards, necessary to make the security systems operational.

All vertical cables shall be installed in risers or ducts unless otherwise approved.

The security contractor shall install all necessary power circuits from the existing distribution board to suitably placed power outlets in the communications room, cupboard or riser.

(b) Uninterruptable Power Supply

Where practicable, all security systems shall continue to be fully operational for at least two hours after mains power failure.

35.10 Documentation

Project Documentation

Consultants and Contractors shall provide the University with all relevant documentation. Provide an AutoCAD plan of the building to the University Project Manager detailing all specifications of the security work performed.

As Constructed Plans

Contractors shall provide to the University AutoCAD drawings indicating project information in the following manner:

- Exact location, number of, and identification of each security component. In the case of CCTV cameras, an indication of the direction to which they point, and their field of view shall be included.
- Actual cable routes between the security components and the controlling system shall be indicated and detail of these provided.
- For any cabling exterior to a building, the type of cable, the exact route taken, the method of construction (e.g. overhead, in duct or direct buried), and if ducted, which duct bores.

“As Constructed” plans in CAD and hard drawing format shall be available when the installation is inspected and shall be submitted to the University Project Manager on completion of the work.

35.11 Acceptance Testing and Certification

An acceptance test and performance demonstration program shall be developed and documented by the security contractor under the direction of ECU or its agents for all security projects. These requirements shall apply to all system components and software. The contractor shall perform the tests and document the results under the supervision and
witnessing of ECU or its agents. Operational scenarios shall be developed and used by the security contractor to simulate the actual use of the system in the normal environment of ECU. Acceptance of the installation is also conditional upon the work being inspected by Edith Cowan University's security consultants (i.e. the designers) and completed to their satisfaction.

Figure 21

36. Colour Coding – Plant and Equipment

NOTE: Where colours are not specified for particular items of plant, the University shall be consulted before colours are nominated. All plant and equipment shall be painted to the following colour scheme. All pipework, valves and fittings in plant rooms, ducts and wherever exposed to view shall have the colours applied over their entirety. Pipework identification shall be achieved throughout by use of Safetyman pipe markers and labels to indicate contents and flow.

NOTE: Colours are selected from
- AS 2700 - Colours for General Purposes
- AS 1345 - The identification of piping Conduits and Ducts.

36.1 Pumps

Domestic Cold Water Pumps

<table>
<thead>
<tr>
<th>Component</th>
<th>Colour</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Orange</td>
<td>X15</td>
</tr>
<tr>
<td>Pump</td>
<td>Canary</td>
<td>Y11</td>
</tr>
<tr>
<td>Coupling Guard</td>
<td>Golden Yellow</td>
<td>Y14</td>
</tr>
<tr>
<td>Base</td>
<td>Black</td>
<td></td>
</tr>
</tbody>
</table>

Domestic Hot Water Pumps

<table>
<thead>
<tr>
<th>Component</th>
<th>Colour</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Orange</td>
<td>X15</td>
</tr>
<tr>
<td>Pump</td>
<td>Pumpkin</td>
<td>X12</td>
</tr>
<tr>
<td>Coupling Guard</td>
<td>Golden Yellow</td>
<td>Y14</td>
</tr>
<tr>
<td>Base</td>
<td>Black</td>
<td></td>
</tr>
</tbody>
</table>

Fire Service Pumps

<table>
<thead>
<tr>
<th>Component</th>
<th>Colour</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor</td>
<td>Orange</td>
<td>X15</td>
</tr>
<tr>
<td>Pump</td>
<td>Signal Red</td>
<td>R13</td>
</tr>
<tr>
<td>Coupling Guard</td>
<td>Golden Yellow</td>
<td>Y14</td>
</tr>
<tr>
<td>Base</td>
<td>Black</td>
<td></td>
</tr>
</tbody>
</table>
36.2 **Air-Handling Plants**

Fan Coil Units
- Motors: Orange X15
- Fan Coils: Deep Cream Y25
- External Motors: Orange X15
- Belt Guards: Golden Yellow Y14 with black stripes

Toilet Exhaust Systems
- Fans: Pumpkin X12
- Motors: Orange X15
- Coupling Guards: Golden Yellow Y14 with black stripes
- Base: Black

Supply Air Systems
- Fans: Straw Y24
- Motors: Orange X15
- Belt Guard: Golden Yellow Y14 with black stripes
- Base: Black

Fume Exhaust Systems
- Supply Air Fans: Pumpkin X12
- Exhaust Fans: Pumpkin X12
- Motors: Orange X15
- Belt Guards: Golden Yellow Y14 with black stripes

Miscellaneous Exhausts (other than those above)
- Fans: Pumpkin X12
- Motors: Orange X15
- Guards: Golden Yellow Y14 with black stripes
- Base: Black

36.3 **Air-Compressors and Vacuum Pumps**

Air Compressors:
- Motors: Sapphire B14
- Compressor: Aqua B25
- After Cooler: Sapphire B14
- Air Receiver: Sapphire B14
- Guards: Grey Blue B43
- Belt Guards: Golden Yellow Y14 with black stripes
Vacuum Pumps:
- Motors: Sapphire B14
- Vacuum Pump: Aqua B25
- Silencer: Sapphire B14
- Vacuum Tank: Sapphire B14
- Guards: Grey Blue B43
- Belt Guards: Golden Yellow Y14 with black stripes
- Base: Black

Refrigeration Systems

Centrifugal Chillers:
- Compressor/ Motor: Orange X15
- Condenser Vessel: Pumpkin X12
- Chiller Vessel: Canary Y11
- Oil Pump Vessel: Orange X15
- Frame: Black
- Pipework Tubing: Raffia X31

Condensing Units (DX system):
- Lettuce G33

Electrical

- Main Electrical Switch Board: Orange X15
- Sub-Boards Switchboard: Orange X15
- Mechanical Service Switchboard: Orange X15
- Power Load Centres: Orange X15
- Cable Trays, Ladders, Ducts & Conduits: Orange X15
- Fire Alarm: Signal Red R13
- Cable Trays, Ducts & Conduits

Pipework, Valves and Fittings (not Outlets)

<table>
<thead>
<tr>
<th>Service</th>
<th>Pipe</th>
<th>Valves</th>
<th>Valve Tops</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic Cold Water</td>
<td>Mid Blue</td>
<td>B15 Signal Red</td>
<td>R13 Black</td>
</tr>
<tr>
<td>Domestic Hot Water</td>
<td>Jade</td>
<td>G21 Signal Red</td>
<td>R13 Black</td>
</tr>
<tr>
<td>Chilled Water</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fire Services Water Mains</td>
<td>Signal Red</td>
<td>R13 Signal Red</td>
<td>R13 Black</td>
</tr>
<tr>
<td>Condenser Water</td>
<td>Signal Red</td>
<td>R13 Signal Red</td>
<td>R13 Black</td>
</tr>
<tr>
<td>Drains</td>
<td>Black</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gas LP</td>
<td>Raffia</td>
<td>X31 Pumpkin</td>
<td>X12 Black</td>
</tr>
<tr>
<td>Compressed Air</td>
<td>Aqua</td>
<td>B25 Ultramarine</td>
<td>B21 Black</td>
</tr>
<tr>
<td>Vacuum</td>
<td>Ultramarine</td>
<td>B21 Black</td>
<td></td>
</tr>
<tr>
<td>Oxygen</td>
<td>Raffia</td>
<td>X31 Pumpkin</td>
<td>X12 Black</td>
</tr>
<tr>
<td>Acetylene</td>
<td>Pumpkin</td>
<td>X12 Black</td>
<td></td>
</tr>
<tr>
<td>Other Gases</td>
<td>To Approval</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demineralised Water</td>
<td>Palm Green</td>
<td>G44 Signal Red</td>
<td>R13 Black</td>
</tr>
</tbody>
</table>
36.7 Supports

Ace Unistrut Mounting Brackets, M.S. Angle Supports and Hanger Rods to be painted ‘Black’ where exposed.
External Works

37. General

The following Landscape Design Guidelines continue to be under development and the details provided are limited to the specific items listed and should in no way be regarded as complete or fully comprehensive. Any landscape design must be developed in consultation with and be approved by ECU (Grounds Services Manager or nominee).

38. Planting

- Planting shall be representative of the climate of the Western Australian southwest region, the location of the site and the expected visual appearance of the campus.
- Planting design should not only reflect the specific requirements and general scale of the building development but also create a landscape with positive biodiversity and habitat values. Where appropriate this is achievable through the use of mixed species planting as opposed to larger monoculture groupings of individual species.
- Plants selections shall be based on the classification of the plant as being “Waterwise” in the Perth area.
- Soft landscape design including all plant selections must be developed in consultation with and be approved by ECU (Grounds Services Manager or nominee).
- Based on campus character and environmental characteristics, the following are individual campus based requirements:

 Joondalup Campus

 Plant species for use within the landscape shall be selected in priority order from the following broad plant groups:
 - Indigenous (i.e. local gene pool)
 - Cottesloe vegetation complex
 - West Australian native
 - Australian native
 - Exotic (courtyards or other nominated spaces only)

 Mount Lawley Campus

 - Open areas including carparks and campus perimeters shall predominantly comprise of native plants species
 - Formal/internal campus landscape areas shall be a mix of exotic and native plants as appropriate for the specific nature of the site including requirements due to building design or usage, shading/aspect etc

 South West (Bunbury) Campus

 - Built areas of the campus shall comprise primarily native Australian plant species
 - Bush areas shall be rehabilitated or embellished as required using local flora species and ideally sourced from the local gene pool within the campus or immediate area

39. Mulching

- All planting beds shall be mulched. Generally this will be with an organic mulch spread evenly over the entire surface to a minimum depth of 75mm.
- The mulch to be used shall preferably be a relatively evenly graded high wood/low leaf content mulch sourced from recycled tree pruning material as much as possible which is free of pathogens, tree/weed seed.
- Finer mulches consisting of easily decomposable organic materials and/or containing peat are generally not to be used due to limited lifespan and the sponge and hydrophobic potentials (both of which reduce the efficiency of water application).
- Pine bark mulch can be used on the Bunbury campus and may be used on the metropolitan campuses where there is a particular aesthetic requirement.
- Inorganic mulches used for either water flow treatment or for aesthetic purposes as necessary shall be a minimum of 50mm deep.
- All mulches are to finish 25mm below all surrounding finished surfaces such as edging, paths, road kerbs and walls.
- Mulch shall not be laid to cover any plant leaves or be mounded around plant stems.

40. **Turf**

- Turf selection shall be of suitable variety for the campus, the location and other specific site parameters. Preferred species include:
 - *Cynodon dactylon* “Wintergreen” Couch.
 - *Stenotaphrum secundatum* “Sir Walter” Buffalo.
 - *Pennisetum clandestinum* Kikuyu (including “Village Green”) NOT Joondalup campus.
- Turf supplies shall be sourced from growers registered with the Turf Growers Association WA or from alternative suppliers who can guarantee all turf supplied is sting-nematode free.
- Turf may be established either by:
 - roll on turf.
 - stolon planting (where speed of establishment or immediate visual appearance is not critical).
 - grass seed only where grass establishment in cool season is required as a temporary measure and may be combined with stolon planting.
- All weed and/or existing grass species if different shall be removed prior to turf establishment.
- All turf areas shall finish with leaf level flush with adjoining hard surfaces.
- New turf areas shall be of consistent grading and finished with a firm surface.
- New turf areas shall be watered and fertilised at an appropriate level and at appropriate intervals during establishment.
- New turf areas shall be protected during establishment.

41. **Irrigation**

- Irrigation design shall be undertaken by irrigation design professionals.
- Designs must be consistent with the ECU General Specifications (available on request).
- All irrigation design must be developed in consultation with and be approved by ECU (Grounds Services Manager or nominee).
- Irrigation components (e.g. sprinkler types) shall generally only be those which ECU uses as standard. Details of these are provided in the ECU General Specification or available by request.
- Irrigation installation shall be undertaken by professional irrigation installers.

42. **Paving**

- All unrestrained edges of paving shall have the full header paver wet laid on a poured concrete edge beam with locking haunch. Detail available on request.
- All paving shall be professionally installed, neatly laid and cut-in, and consistently graded with surface drainage discharge treated/allowed for with no unwanted down-stream discharge effects
CAD Documentation Protocol

43. CAD

43.1 General

The purpose of this protocol is to set out conditions and requirements in relation to CAD procedures and standards for tender and “AS CONSTRUCTED” documentation produced for Edith Cowan University by its consultants.

Edith Cowan University’s Facilities and Services use AutoCAD as the primary CAD system, and other specialised software applications for Space Planning and Facilities Management.

Edith Cowan University’s CAD and spatial databases are based on the GDA94 map grid coordinate system. All site information is correctly related to this coordinate system with the units set to 1 unit = 1 metre.

The University commissions out Capital Works including design, documentation and maintenance works programs to external consultants. To achieve data uniformity to the standard required by the University, it has been necessary to implement a set of procedures in relation to the production of CAD drawings and building manuals.

The following standards are set out using AutoCAD as the base CAD system. For users of other CAD systems the following ECU standards will need to be used prior to delivery to the University, they must be converted to AutoCAD DWG format and then thoroughly tested on a PC equipped with AutoCAD.

If 3D documentation has been created, it needs to be supplied in a format compatible with REVIT.

43.2 Schedule of Documentation to be Provided

(a) At Tender

The Consultant shall supply a full set of contract documents as tendered to the Principal’s Representative, including the following:

- 1 set of drawings in hard copy form (A1 size prints) and
- 1 set of electronic drawings in PDF format (A1 size prints)
- 1 set of openable and legible electronic drawings, compliant with ECU CAD protocols, in AutoCAD DWG format; and
- Supply a CAD Drawing Index – Appendix 2
- Preferred naming style:
 1111_XX_XX100 – L2 Furniture Layout
 1111_XX_XX101 – L2 Ceiling Plan
 1111_XX_XX103 – L4 Furniture Layout
(b) At "As Constructed"

The Consultant shall supply the following "AS CONSTRUCTED" documents to the Principal's Representative:

- 1 set of "AS CONSTRUCTED" drawings in hard copy form (A1 size prints)
- 1 set of electronic drawings in PDF format (A1 size prints)
- 1 set of openable and legible electronic drawings, compliant with ECU CAD protocols, in AutoCAD DWG format
- 1 set of other "AS CONSTRUCTED" documents such as Operation Manuals and Building Manuals in hard copy form (printed)
- Where the project incorporates more than one building, each building must have its own manual as a separate physical volume
- 1 set of other "AS CONSTRUCTED" documents such as Operation Manuals and Building Manuals in electronic format
- Supply a CAD Drawing Index – Appendix 2
- Preferred naming style:
 1111_XX_XX100 – L2 Furniture Layout
 1111_XX_XX101 – L2 Ceiling Plan
 1111_XX_XX103 – L4 Furniture Layout

(c) Format of Documentation to be Provided

All drawings provided to the University shall comply with the standards referred to in this manual.

All drawings provided are to be in AutoCAD DWG format only.

All "AS CONSTRUCTED" drawings shall include an "As-constructed" stamp with company name in it.

All drawings shall be clearly labelled with current issue type, revision and date. For example: Tender Issue, As-constructed, etc.

All site and floor plans are to be provided as a single complete model saved in model space.

All title blocks to be inserted in paper space. Multiple paper space layouts of the complete model or parts thereof are allowed.

All site plans are to be provided at standard scales, e.g. 1:1000, where (1 unit = 1 metre) and match the spatial coordinates of the GDA94 geographical coordinate system contained in the site plan as supplied by the University.

All floor plans are to be provided at standard drawing scales, e.g. 1:100, where (1 unit = 1 mm).

Each floor plan shall be in a separate CAD file.

Mandatory: each set of drawings shall include a cover sheet providing an index of all the drawings in the contract set. The index will list the drawing number and the title of each drawing.
43.3 **Provision of Data to the Consultant by ECU**

ECU shall provide the following files for the use of the Consultant:

Table 11

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECU A1 Title Block.DWG</td>
<td>A1 size (841 x 594) floor plan base drawing sheet with title block</td>
</tr>
<tr>
<td>ECU A1 Title Block – site plan.DWG</td>
<td>A1 size (841 x 594) site plan base drawing sheet with site information specific title block and services line types & legend</td>
</tr>
<tr>
<td>ECU A1 Title Block.DWG</td>
<td>A1 size cover drawing with title block with standard text</td>
</tr>
<tr>
<td>ECU CAD Documentation Protocol.DOC</td>
<td>A copy of the University CAD Documentation Procedures Manual in Microsoft Word format.</td>
</tr>
</tbody>
</table>

(a) **Template Drawings**

The Consultant’s own logos are to be inserted in the area provided at the base of the drawing sheet title block. The area may be adjusted to suit by moving up or down the University logo block.

These template drawings contain attributable title blocks. These title blocks are NOT to be exploded and are to be filled in or edited as blocks.

(b) **Compliance of Existing Drawings with the Standard**

Not all drawings supplied by ECU will fully comply with the current standards of this protocol. It shall be the responsibility of the Consultant to convert these drawings, as necessary, for their own use, so as to comply with Clause 1.3. Provision of Data to the University.

44. **ECU Preferred Drafting Standards**

44.1 **Drawing Sheet Numbering**

Drawing sheets shall be numbered as follows:

Character 1 identifies type of **Discipline or Consultant**:
- A: Architectural
- C: Civil
- E: Electrical
- F: Fire detection and protection and/or Security
- G: General
- H: Hazardous materials
- I: Interiors
- L: Landscaping and Irrigation
- M: Mechanical
Characters 2 and 3 identify Drawing Sheet Number:
Numbers from 01 through to 99, identify drawing sheet number in each series.

Character 4 identifies Revision stage:
Characters from “A” through to “Z”, identify revision stage of drawing sheet.

Examples of valid drawing sheet numbers:
- A01 Architectural; drawing sheet number 01; no revision
- E17 C Electrical; drawing sheet number 17; revision C
- M09 B Mechanical; drawing sheet number 09; revision B

44.2 CAD Drawing File Naming Conventions

Characters 1 to 4 as described in 6.1.2.1 Drawing Sheet Numbering

Separator (a dash separating Drawing Number from Drawing Description):
- -

General Drawing Contents Description:
- SITE Site Plan and/or Site Details
- FLOOR Floor Plans
- ROOF Roof Plans
- CEILING Reflected Ceiling Plans
- ELEV Elevations
- SECT Cross sections
- DETAIL Details
- LAYOUT Room Layouts
- WINDOW Window Schedules
- DOOR Door Schedules
- FINISH Schedules of Finishes
- FURNIT Furniture Schedules and Details
- MISC Miscellaneous
- ...etc. ...

Examples of valid CAD drawing file names:
- A15-FLOOR.dwg Architectural; drawing sheet 15; Floor plan
- A09B-ELEV.dwg Architectural; drawing sheet 9; Revision B; Elevations
- E17-FLOOR.dwg Electrical; drawing sheet 17; Floor plan
- M06C-SECT.dwg Mechanical; drawing sheet 6; Revision C; Sections

44.3 Australian Standards

Drawings shall meet the requirements of the relevant parts of the Australian Standard drafting codes for each relevant discipline.
44.4 **Graphic Symbols**

Graphic symbols shall be in accordance with the relevant Australian Standards Association publications.

44.5 **Line work**

All line work shall be as follows:

<table>
<thead>
<tr>
<th>COLOUR No</th>
<th>COLOUR</th>
<th>PEN SIZE (mm) & Colour</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RED</td>
<td>0.18 Black</td>
</tr>
<tr>
<td>2</td>
<td>YELLOW</td>
<td>0.25 Black</td>
</tr>
<tr>
<td>3</td>
<td>GREEN</td>
<td>0.35 Black</td>
</tr>
<tr>
<td>4</td>
<td>CYAN</td>
<td>0.50 Black</td>
</tr>
<tr>
<td>5</td>
<td>BLUE (Construction lines)</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>MAGENTA</td>
<td>0.70 Black</td>
</tr>
<tr>
<td>7</td>
<td>WHITE/BLACK</td>
<td>1.00 Black</td>
</tr>
<tr>
<td>8</td>
<td>GREY (Background / Hatching)</td>
<td>0.20</td>
</tr>
</tbody>
</table>

N.B. - Consultants shall supply the CTB plot style/s used for plotting the drawings.

44.6 **Line types**

Consultants shall use line types from the ACADISO.LIN file. Special line types are permitted. The drawing variable “measurement=1” shall be set to ensure ISO compliance.

44.7 **Text**

The preferred text shall be ISO font type - ISOCP2.shx

N.B. - All special fonts used in the production of detail feature survey drawings, special fonts used in the consultant's logo and any other fonts that are not normally supplied with AutoCAD are to be supplied with the drawings by the consultant.

44.8 **Drawing Sheet Size**

All drawings shall be produced on A1 size sheets.

No documents shall be produced on other sheet sizes without the prior written approval of the University Architect.

44.9 **Paper Space**

Paper space viewports are to be locked.

44.10 **Entities Outside Drawing Borders**

All unnecessary content & entities outside of drawing borders are to be erased.

44.11 **Purging**

All drawings are to be purged of all unused content, i.e.: layers, line types, blocks, text styles, etc.
Orientation

All plans and part plans are to be orientated such that North is towards the top of the sheet where possible.

External Referencing

All drawings must not include XREF’s.

If XREFs are used, they are to be bound to the drawing using the INSERT option, such that they become standard blocks.

Master List of Suggested Layer Names

ARCHITECTURAL LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-GRID</td>
<td>Building planning grid or column grid</td>
</tr>
<tr>
<td>A-WAL</td>
<td>Walls</td>
</tr>
<tr>
<td>A-DOOR</td>
<td>Doors</td>
</tr>
<tr>
<td>A-GLAZ</td>
<td>Windows, glazed partitions</td>
</tr>
<tr>
<td>A-COLS</td>
<td>Columns</td>
</tr>
<tr>
<td>A-FLOOR</td>
<td>Floor information</td>
</tr>
<tr>
<td>A-CEIL</td>
<td>Ceiling information</td>
</tr>
<tr>
<td>A-LIGHT</td>
<td>Light fixtures</td>
</tr>
<tr>
<td>A-HVAC</td>
<td>HVAC diffusers</td>
</tr>
<tr>
<td>A-ELEV</td>
<td>Exterior building elevations</td>
</tr>
<tr>
<td>A-DETAIL</td>
<td>Details</td>
</tr>
<tr>
<td>A-EQUIP</td>
<td>Equipment</td>
</tr>
<tr>
<td>A-FURN</td>
<td>Furniture</td>
</tr>
<tr>
<td>A-ROOF</td>
<td>Roof</td>
</tr>
<tr>
<td>A-SECT</td>
<td>Sections</td>
</tr>
</tbody>
</table>

CIVIL LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-PROP</td>
<td>Property lines, survey benchmarks, text</td>
</tr>
<tr>
<td>C-TOPO</td>
<td>Proposed contour lines and elevations</td>
</tr>
<tr>
<td>C-BLDG</td>
<td>Building footprints</td>
</tr>
<tr>
<td>C-ROAD</td>
<td>Roadways</td>
</tr>
<tr>
<td>C-CARP</td>
<td>Car parking lots</td>
</tr>
</tbody>
</table>

ELECTRICAL LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>E-AUDIO</td>
<td>Audio (sound, PA, etc) system</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>E-AUDIO-VISUAL</td>
<td>Audio-visual system</td>
</tr>
<tr>
<td>E-COMM</td>
<td>Telephone & communications systems</td>
</tr>
<tr>
<td>E-LIGHT</td>
<td>Lighting</td>
</tr>
<tr>
<td>E-POWER</td>
<td>Power</td>
</tr>
<tr>
<td>E-CONTROL</td>
<td>Electric control systems</td>
</tr>
<tr>
<td>E-GROUND</td>
<td>Ground system</td>
</tr>
<tr>
<td>E-AUXL</td>
<td>Auxiliary systems</td>
</tr>
<tr>
<td>E-LTNG</td>
<td>Lightning protection system</td>
</tr>
<tr>
<td>E-FIRE</td>
<td>Fire alarm, fire extinguishers</td>
</tr>
<tr>
<td>E-DATA</td>
<td>Data outlets</td>
</tr>
<tr>
<td>E-TVAN</td>
<td>TV antenna system</td>
</tr>
<tr>
<td>E-CCTV</td>
<td>Closed-circuit TV</td>
</tr>
<tr>
<td>E-NURSE</td>
<td>Nurse call system</td>
</tr>
<tr>
<td>E-SECU</td>
<td>Security system</td>
</tr>
<tr>
<td>E-PAGE</td>
<td>Paging system</td>
</tr>
<tr>
<td>E-DICT</td>
<td>Central dictation system</td>
</tr>
<tr>
<td>E-BELL</td>
<td>Bell system</td>
</tr>
<tr>
<td>E-CLOCK</td>
<td>Clock system</td>
</tr>
<tr>
<td>E-ALARM</td>
<td>Miscellaneous alarm system</td>
</tr>
<tr>
<td>E-INTERCOM</td>
<td>Intercom system</td>
</tr>
<tr>
<td>E-LEGEND</td>
<td>Legend of symbols</td>
</tr>
<tr>
<td>E-1LINE</td>
<td>One-line diagrams</td>
</tr>
<tr>
<td>E-RISER</td>
<td>Riser diagram</td>
</tr>
<tr>
<td>E-SITE</td>
<td>Site electrical substations, poles</td>
</tr>
</tbody>
</table>

FIRE DETECTION AND PROTECTION AND/OR SECURITY LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>F-FIRE</td>
<td>Fire system</td>
</tr>
<tr>
<td>F-CO2S</td>
<td>CO² system</td>
</tr>
<tr>
<td>F-HALON</td>
<td>Halon</td>
</tr>
<tr>
<td>F-IGAS</td>
<td>Inert gas</td>
</tr>
<tr>
<td>F-SPRINCL</td>
<td>Fire protection sprinkler system</td>
</tr>
<tr>
<td>F-STDTP</td>
<td>Fire protection standpipe system</td>
</tr>
<tr>
<td>F-DETECT</td>
<td>Fire detection system</td>
</tr>
<tr>
<td>F-PROT</td>
<td>Fire protection system</td>
</tr>
<tr>
<td>F-SECU</td>
<td>Security system</td>
</tr>
</tbody>
</table>
GENERAL LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-PLAN</td>
<td>Floor plan - key plan</td>
</tr>
<tr>
<td>G-SITE</td>
<td>Site plan - key map</td>
</tr>
<tr>
<td>G-ACCESS</td>
<td>Access plan</td>
</tr>
<tr>
<td>G-EVAC</td>
<td>Evacuation plan</td>
</tr>
<tr>
<td>G-CODE</td>
<td>Code compliance plan</td>
</tr>
</tbody>
</table>

HAZARDOUS LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-PLAN</td>
<td>Floor plan</td>
</tr>
<tr>
<td>H-SITE</td>
<td>Site plan</td>
</tr>
</tbody>
</table>

INTERIOR LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I-ELEV</td>
<td>Interior wall elevations</td>
</tr>
<tr>
<td>I-FURN</td>
<td>Furniture layout</td>
</tr>
<tr>
<td>I-DETAIL</td>
<td>Details</td>
</tr>
</tbody>
</table>

LANDSCAPING AND IRRIGATION LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-SITE</td>
<td>Site improvements</td>
</tr>
<tr>
<td>L-ACCESS</td>
<td>Access</td>
</tr>
<tr>
<td>L-PAVE</td>
<td>Paved areas</td>
</tr>
<tr>
<td>L-IRRIG</td>
<td>Irrigation system</td>
</tr>
<tr>
<td>L-PLANTS</td>
<td>Plant and landscape materials</td>
</tr>
</tbody>
</table>

MECHANICAL LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-BRINE</td>
<td>Brine systems</td>
</tr>
<tr>
<td>M-CHIMNEY</td>
<td>Prefabricated chimneys</td>
</tr>
<tr>
<td>M-AIR</td>
<td>Compressed air systems</td>
</tr>
<tr>
<td>M-CONTROL</td>
<td>Controls and instrumentation</td>
</tr>
<tr>
<td>M-DUST</td>
<td>Dust and fume collection system</td>
</tr>
<tr>
<td>M-ELHEAT-EQUIP</td>
<td>Electric heat equipment</td>
</tr>
<tr>
<td>M-ENERGY</td>
<td>Energy management system</td>
</tr>
<tr>
<td>Layer name</td>
<td>Layer definition</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>M-EXHS</td>
<td>Exhaust systems</td>
</tr>
<tr>
<td>M-FUEL</td>
<td>Fuel systems</td>
</tr>
<tr>
<td>M-CHILLWATER</td>
<td>Chilled water systems</td>
</tr>
<tr>
<td>M-HOTW</td>
<td>Hot water heating system</td>
</tr>
<tr>
<td>M-HVAC</td>
<td>HVAC systems</td>
</tr>
<tr>
<td>M-MACH</td>
<td>Machine shop equipment</td>
</tr>
<tr>
<td>M-GAS</td>
<td>Gas systems</td>
</tr>
<tr>
<td>M-GAS-LAB</td>
<td>Laboratory gas systems</td>
</tr>
<tr>
<td>M-GAS-MED</td>
<td>Medical gas systems</td>
</tr>
<tr>
<td>M-GAS-NAT</td>
<td>Natural gas piping</td>
</tr>
<tr>
<td>M-PROC</td>
<td>Process systems</td>
</tr>
<tr>
<td>M-REFG</td>
<td>Refrigeration systems</td>
</tr>
<tr>
<td>M-SPECIAL</td>
<td>Special systems</td>
</tr>
<tr>
<td>M-STEAM</td>
<td>Steam systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLUMBING (HYDRAULIC) LAYERS</td>
<td></td>
</tr>
<tr>
<td>Layer name</td>
<td>Layer definition</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>P-EQUIP</td>
<td>Plumbing miscellaneous equipment</td>
</tr>
<tr>
<td>P-FIXT</td>
<td>Plumbing fixtures</td>
</tr>
<tr>
<td>P-STORM</td>
<td>Storm drainage system</td>
</tr>
<tr>
<td>P-SEWER</td>
<td>Sewer system</td>
</tr>
<tr>
<td>P-WASTE</td>
<td>Waste water system</td>
</tr>
<tr>
<td>P-WATER</td>
<td>Water system</td>
</tr>
<tr>
<td>P-GAS-NAT</td>
<td>Natural gas systems</td>
</tr>
<tr>
<td>P-GAS-LAB</td>
<td>Laboratory gas systems</td>
</tr>
<tr>
<td>P-GAS-MED</td>
<td>Medical gas systems</td>
</tr>
<tr>
<td>P-FIRE</td>
<td>Fire protection-systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>STRUCTURAL LAYERS</td>
<td></td>
</tr>
<tr>
<td>Layer name</td>
<td>Layer definition</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>S-GRID</td>
<td>Column grid</td>
</tr>
<tr>
<td>S-FOUND</td>
<td>Foundation</td>
</tr>
<tr>
<td>S-FOOT</td>
<td>Footings</td>
</tr>
<tr>
<td>S-SLAB</td>
<td>Reinforced concrete slabs</td>
</tr>
<tr>
<td>S-ANCHORBOLT</td>
<td>Anchor bolts</td>
</tr>
<tr>
<td>S-COLS</td>
<td>Columns</td>
</tr>
<tr>
<td>S-WALL</td>
<td>Structural bearing or shear walls</td>
</tr>
</tbody>
</table>
S-METAL
- Miscellaneous metal

S-BEAM
- Beams

S-JOISTS
- Joists

S-DECK
- Structural floor decks

GENERAL LAYERS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>*-ANNO</td>
<td>Annotations</td>
</tr>
<tr>
<td>*-ANNO-SYMB</td>
<td>Symbols</td>
</tr>
<tr>
<td>*-ANNO-TITLEBL</td>
<td>Border and title block</td>
</tr>
<tr>
<td>*-DIMS</td>
<td>Dimensions</td>
</tr>
<tr>
<td>*-ELEV</td>
<td>Elevations (external or internal) or 3D views</td>
</tr>
<tr>
<td>*-SECT</td>
<td>Cross sections</td>
</tr>
<tr>
<td>*-DETAIL</td>
<td>Details</td>
</tr>
</tbody>
</table>

The use of an asterisk (*) indicates a place holder for the discipline code and/or feature group.

COMMON FEATURE / SUB CATEGORY DESCRIPTIONS

<table>
<thead>
<tr>
<th>Layer name</th>
<th>Layer definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>-***-ELEV</td>
<td>Elevation</td>
</tr>
<tr>
<td>-***-IDENT</td>
<td>Identification numbers, names or tags</td>
</tr>
<tr>
<td>-***-PATT</td>
<td>Hatching</td>
</tr>
<tr>
<td>-***-ANNO</td>
<td>Annotation</td>
</tr>
</tbody>
</table>

45. Layering Standards

45.1 General

All drawings must utilise a feature based layering system, which ensures that layer names are meaningful and logical and can be easily used and interpreted.

The use of feature based layer names ensures:

- That all drawing content is placed on the appropriate layer for the building systems, engineering service, etc… that is being drawn.
- Each drawing object is fully contained in one layer,

45.2 Layer Format

The CAD layer names are organised as a hierarchy based on 2 or 3 key elements:

Discipline, Feature & Sub Category

- **Discipline:** Single character identifier i.e. Architectural, Electrical, etc…

 (as detailed above in section 1)
Feature: Primary Feature, i.e. Building, service or drafting element
Sub Category: Provides a breakdown of the primary feature into logical groups

For example:

\[A\]-[W][A][L][L]\n
| Discipline, Feature |

\[A\]-[W][A][L][L][M][A][S][O]\n
| Discipline, Feature, Sub Category |

The feature and sub category designations are abbreviated to four or more characters. This arrangement accommodates expansion of layers and their further differentiation by the use of additional feature based names to the layer list.

45.3 Master List of Suggested Layer Names

The master list of layer names above is supplied as a guide and is recommended for use should the consultant not have an equivalent, compliant layering system. Additional layer names can be added as long as the naming remains clear.
CAD Drawing Index

Supply a comprehensive schedule for all drawings in the project.

<table>
<thead>
<tr>
<th>CAD Drawing File Name</th>
<th>Dwg No</th>
<th>Rev No</th>
<th>Drawing Name</th>
<th>Dwg Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>A02-FLOOR</td>
<td>A02</td>
<td>A</td>
<td>Floor Plan (example)</td>
<td>1:100</td>
</tr>
</tbody>
</table>
Appendix 3

CAD Drawing Checklist

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Drawings produced on the ECU standard drawing sheets where relevant.</td>
</tr>
<tr>
<td>2</td>
<td>Each “As constructed” drawing is clearly labelled as such in its title block.</td>
</tr>
<tr>
<td>3</td>
<td>The ECU Project No and other relevant information is entered into the Title Block.</td>
</tr>
<tr>
<td>4</td>
<td>All file names comply with the ECU drawing file naming convention.</td>
</tr>
<tr>
<td>5</td>
<td>Total folder/file name path should be descriptive but limited to a total of 120 characters.</td>
</tr>
<tr>
<td>6</td>
<td>All disks have been scanned for virus infections.</td>
</tr>
<tr>
<td>7</td>
<td>All disks should be opened prior to sending to ECU to verify data integrity.</td>
</tr>
<tr>
<td>8</td>
<td>All drawings have been saved as AutoCAD DWG files, native format if different should also be sent separately.</td>
</tr>
<tr>
<td>9</td>
<td>All drawings have been test plotted directly from the disks using AutoCAD.</td>
</tr>
<tr>
<td>10</td>
<td>The current layer in all drawings is set to 0.</td>
</tr>
<tr>
<td>11</td>
<td>The current menu to all drawings is set to “Acad” or “None”.</td>
</tr>
<tr>
<td>12</td>
<td>The drawings are saved in model space.</td>
</tr>
<tr>
<td>13</td>
<td>The drawing units in model space set to 1 unit = 1 metre.</td>
</tr>
<tr>
<td>14</td>
<td>The drawing limits set to the correct sheet size where relevant.</td>
</tr>
<tr>
<td>15</td>
<td>All site plans and floor plans at 1:100 scale or smaller (1:200, 1:500, etc.) have their spatial coordinates set to match the GDA94 geographical grid system contained in the base site plan(s) supplied by ECU or, in case of all other drawings, the bottom left hand corner of each drawing is set to 0,0.</td>
</tr>
<tr>
<td>16</td>
<td>Text styles, line types & hatchings and entity colours conform to the ECU CAD Documentation Procedures Manual.</td>
</tr>
<tr>
<td>17</td>
<td>Any special fonts and standard fonts that are not normally available in typical AutoCAD installations are provided with the drawings.</td>
</tr>
<tr>
<td>18</td>
<td>All entities are placed on their correct layer, using the ECU layering standard.</td>
</tr>
<tr>
<td>19</td>
<td>All X-ref drawing files used in the production of drawings have been removed or inserted into the model drawings.</td>
</tr>
<tr>
<td>20</td>
<td>All drawings have been purged of all unused layers, line types, blocks, text styles, etc, and all other extraneous and unnecessary information and entities have been erased.</td>
</tr>
<tr>
<td>21</td>
<td>The Project Index has been completed.</td>
</tr>
</tbody>
</table>

Consultant Name: ___

Consultant Signature: ___

(Authorised Person)

Date: ___