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EXTENDED ABSTRACT 

Most studies on the asymmetric and non-linear 
properties of US business cycles exclude the 
dimension of asymmetric conditional volatility.  
Engle (1982) proposes an autoregressive 
conditional heteroskedasticity (ARCH) model to 
capture the time-varying volatility of inflation rates 
in the United Kingdom.  Weiss (1984) finds 
evidence of ARCH in the US industrial 
production.  The ARCH model is then extended to 
generalized ARCH (GARCH) models by 
Bollerslev (1986) and exponential GARCH models 
by Nelson (1991).  Recently Stock and Watson 
(2002) find that a substantial reduction in the 
variability of the US output growth since the early 
1980s can be explained by a reduction in the 
variance of macroeconomic shocks. However, a 
few researchers have attempted to formally model 
asymmetries in the conditional variance of 
business-cycle variables (see Brunner 1992, 
Hamori 2000, and Ho and Tsui 2001, 2003 and 
2004). All these studies are confined to univariate 
GARCH analysis. One major drawback of the 
univariate GARCH framework is that it does not 
capture the co-movement of business-cycle 
variables, nor analyze the empirical evidence of 
asymmetric volatilities in the context of 
multivariate GARCH approach.     

 In this paper, we use the multivariate GARCH 
framework to investigate the evidence of 
asymmetric volatility and time-varying conditional 
correlations between sectors of the monthly US 
industrial production (IIP) indices in 1961-1997.  
We propose three new multivariate asymmetric 
GARCH models, which are developed based on a 
synthesis and improvement of the methodologies 
of Ding et al (1993), Sentana (1995) and Tse and 
Tsui (2002), including the VC-Quadratic GARCH 
(VC-QGARCH) model, VC-Leveraged GARCH 
(VC-LGARCH) model, and VC-Threshold 
GARCH (VC-TGARCH) model. Our proposed 
models are computationally manageable and are 
capable of capturing features of volatility 
asymmetry and the path of time-varying 

correlations. The issues of conditional 
heteroskedasticity and volatility asymmetry of 
business cycles are important because of their 
implications on macroeconomic and business cycle 
theory, measurement and forecasting. If business 
cycles are conditionally heteroskedastic and 
exhibit volatility asymmetry, then any theory 
assuming the absence of either of these properties 
is most likely inadequate. It is crucial to 
understand the potential macroeconomic policy 
implications of asymmetric volatility shocks for 
economies. If negative shocks induce greater 
future volatilities on IIP than positive shocks of the 
same magnitude, this might further vindicate the 
implementation of macroeconomic stabilisation 
measures by the government in times of recession. 

We use monthly data from the OECD website 
SourceOECD: Main Economic Indicators for the 5 
sectoral IIP of the US: the Consumer Good (CG), 
the Investment Good (IG), the Manufacturing (M), 
the Non-Durables (ND) and the Raw Materials 
(RM) with 444 observations.  

The results show that negative shocks have a 
greater impact on future volatilities than positive 
shocks of the same magnitude for the 5 sectoral IIP 
series in the U.S. Most parameter estimates of the 
time-varying conditional correlation coefficient 
equation are significant at the 5% level, indicating 
that dynamic correlations probably exist among the 
5 main industrial groups/sectors. The estimates of 
the time-invariant component of the correlation 
coefficient equation, , are significantly positive 
and broadly similar to those estimates from the 
constant conditional correlations models, which is 
consistent with Lucas’ (1977) observation More 
importantly, the pattern of conditional correlations 
and the magnitude of  differ among the 10 
sectoral pairs, ranging from a low of 0.2763 (IG-
ND pair) to 0.7652 (M-RM pair) and 0.8363 (CG-
M pair). This is consistent with results from the 
VC-LGARCH model. The findings on asymmetric 
effects have policy implications for government to 
consider the effective countercyclical measures 
during recessions. 
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1. INTRODUCTION 

Searching for evidence of asymmetries and 
nonlinearities in the US business cycles has been 
under extensive empirical examination.  Basically 
there are two major approaches: One focuses on 
the non-linear behaviour in the conditional mean 
function, and the other concentrates on the time-
varying features of higher moments, particularly 
the conditional variances.  Examples for the first 
approach include Neftci (1984) and Sichel (1993) 
who find evidence of asymmetries in the post-war 
unemployment time series of the United States. 
Other investigations include Luukkonen and 
Terasvirta (1991), Terasvirta and Anderson 
(1992),and Diebold and Rudesbusch (1996). Most 
of these empirical studies are predominantly on the 
conditional mean equation.  For the second 
approach, a noteworthy example is the seminal 
paper by Engle (1982), who proposes an 
autoregressive conditional heteroskedasticity 
(ARCH) model to capture the time-varying 
volatility of inflation rates in the United Kingdom.  
Weiss (1984) finds evidence of ARCH in the US 
industrial production.  The ARCH model is then 
extended to generalized ARCH (GARCH) models 
by Bollerslev (1986) and exponential GARCH 
models by Nelson (1991). Recently Stock and 
Watson (2002) find that a substantial reduction in 
the variability of the US output growth since the 
early 1980s can be explained by a reduction in the 
variance of macroeconomic shocks. However, a 
few researchers have attempted to formally model 
asymmetries in the conditional variance of 
business-cycle variables (see Brunner 1992, 
Hamori 2000, and Ho and Tsui 2001, 2003 and 
2004). All these studies are confined to univariate 
GARCH analysis. The primary limitation with the 
use of the univariate GARCH framework is that it 
does not capture the co-movement of business-
cycle variables, nor analyze the empirical evidence 
of asymmetric volatilities in the context of 
multivariate GARCH approach.  

In this paper, we use the multivariate GARCH 
framework to investigate the evidence of 
asymmetric volatility and time-varying conditional 
correlations between sectors of the monthly US 
industrial production (IIP) indices from January 
1961 through December 1997.  Three new 
multivariate asymmetric GARCH models are 
proposed, including the VC-Quadratic GARCH 
(VC-QGARCH) model, VC-Leveraged GARCH 
(VC-LGARCH) model, and VC-Threshold 
GARCH (VC-TGARCH) model. These models are 
developed based on a synthesis and improvement 
of the methodologies of Ding et al (1993), Sentana 
(1995) and Tse and Tsui (2002). These 
specifications are computationally manageable, 

and permit the simultaneous modelling of 
conditional volatility asymmetry and time-varying 
conditional correlations. Furthermore, these 
models are quite general because they nest various 
popular versions of asymmetric GARCH models. 
This in turn permits a systematic comparison of 
the performance of different asymmetric 
specifications. The issues of conditional 
heteroskedasticity and volatility asymmetry of 
business cycles are important because of their 
implications on macroeconomic and business cycle 
theory, measurement and forecasting. If business 
cycles are conditionally heteroskedastic and 
exhibit volatility asymmetry, then any theory 
assuming the absence of either of these properties 
is most likely inadequate. It is crucial to 
understand the potential macroeconomic policy 
implications of asymmetric volatility shocks for 
economies. If negative shocks induce greater 
future volatilities on IIP than positive shocks of the 
same magnitude, this might further vindicate the 
implementation of macroeconomic stabilisation 
measures by the government in times of recession. 

2. MODEL SPECIFICATION 

We first define the GARCH framework for 
modelling asymmetry volatility and time-varying 
conditional correlations. There are three 
components of the bivariate asymmetric GARCH 
models: the conditional mean equation, the 
conditional variance equation and the time-varying 
conditional correlation equation 

Denoting Yit as the ith variable of interest, we 
define yit as the growth rate (in percentage) 
calculated on a continuously compounding basis: 

100)log(
1it

it
it

Y
Yy , i = 1, 2  (1) 

Assume that the conditional mean equation for 
each variable is captured by an autoregressive 
AR(k) filter:  

yit = 0 + 
k

j 1
jyit-j + it , i = 1, 2  (2) 

where it is the white noise and is assumed to have 

the following structure: 

it = siteit, eit ~ N(0,1), i = 1, 2   (3) 

sit is the conditional variance with three types of 
specifications: QGARCH, LGARCH and 
TGARCH.  We choose such specifications as they 
nest several versions of popular GARCH models. 
 
We adopt the QGARCH(1,1) proposed by 
Sentana’s (1995) as: 
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sit =  +  it-1 + 2
it-1 + s it-1  (4) 

where  is the asymmetric coefficient.  This model 
can test for dynamic asymmetries in the 
conditional variance function without departing 
significantly from the standard specification.  
 
The specifications of LGARCH and TGARCH are 
based on Ding et al (1993).  Depending on the 
value of the exponent , LGARCH and TGARCH 
share the following structure: 
 
sit  =  + (| it-1| - it-1)  + sit-1      =1 or 2  (5)  

 
When  = 2, this is the LGARCH(1,1) model 
which nests the Glosten et al’s (1993) GJR model.  
Alternatively, when  = 1, it is the TGARCH(1,1) 
model, which incorporates an asymmetric version 
of the Taylor/Schwert model and Zakoian’s (1994) 
Threshold ARCH (TARCH) model.  
 
The major problem with multivariate GARCH 
models in general is that they inevitably increase 
the number of parameters to be estimated and 
complicate the specifications of the conditional 
variance-covariance matrix. In particular, it could 
be difficult to verify the condition of positive-
definiteness for the variance-covariance matrix of 
an estimated multivariate (MGARCH) model, not 
to mention impose this condition during the 
optimisation of the log-likelihood function. To 
incorporate dynamic correlations in the MGARCH 
model and yet satisfy the positive-definite 
condition, Tse and Tsui (2002) have recently 
developed the Varying-Correlation (VC) -
MGARCH (VC-MGARCH) model. 
 
Following Tse and Tsui (2002), we adopt an 
ARMA structure for the conditional correlations 
equation in a bivariate model: 
 

t = (1- 1- 2)  + 1 t-1 + 2 t-1  (6) 
where (1- 1- 2)  is the time-invariant conditional 
correlation coefficient, 1 and 2 are assumed to be 
nonnegative and sum up to less than 1, and t-1 is 
specified as  

t-1 = 
2

1

2

1

2

,2

2

,1

2

1 ,2,1

))((
n n ntnt

n ntnt

ee
ee   (7) 

Assuming conditional normality, the conditional 
log likelihood function of the sample (ignoring the 
constant term) is      

     (8) 

The total number of parameters to estimate is 11 
for a bivariate asymmetric GARCH model with 
varying correlations, and this number always 
exceeds that of Bollerslev’s (1990) constant-
correlation model by 2, because of the parameters 

1 and 2. Indeed the CC-MGARCH model is 
nested within the VC-MGARCH model under the 
restrictions 1 = 2 = 0.  

3. THE DATA 

We use the monthly US industrial production (IIP) 
indices to study the possible asymmetry and non-
linearity of business cycles over the period from 
January 1961 to December 1997.  This is because 
the IIP demonstrates more cyclical variation than 
GDP/GNP and constitutes the most cyclical subset 
of the aggregate economy. GDP inevitably 
includes both a large service sector which cannot 
be accurately measured, and a large agricultural 
sector that is difficult to estimate or dominated by 
its own meteorological cycle. Such components 
could tend to obscure business cycles. The 
preference of IIP to GDP is further corroborated by 
A’Hearn and Woitek (2001) and the Business 
Cycle Dating Committee of the National Bureau of 
Economic Research (see NBER 2002). In 
particular, the committee considers IIP to be one of 
the four most important indicators in developing 
its monthly business cycle chronology. In contrast, 
it gives relatively little weight to real GDP because 
this indicator is only measured quarterly and is 
subject to continuing large revisions.  

Nonetheless, analysing the overall IIP alone would 
not be sufficient in developing a deeper 
understanding of the properties of the US business 
cycles, and different sectors would respond with 
varying degrees of sensitivity to the overall 
recession. According to Lucas (1977), the 
production of producer and consumer durables 
exhibits much more amplitude than the production 
of non-durables. Also, the production and prices of 
agricultural goods and natural resources have 
lower than average conformity. Given these 
empirical regularities, conducting a sectoral 
analysis of industrial production would further 
shed light on the characteristics of the US business 
cycles. In this study we adopt the 5 sectoral IIP of 
the US: the Consumer Good (CG), the Investment 
Good (IG), the Manufacturing (M), the Non-
Durables (ND) and the Raw Materials (RM). 
These series are regularly monitored by the 
Conference Board’s Business Cycle Indicators to 
evaluate the future directions and changes of the 
US business cycles. The 5 (seasonally adjusted) 
data sets are collected from the OECD website 
SourceOECD: Main Economic Indicators.  
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4. RESULTS 

We first assess the features of the IIP series. Due 
to space limitation, the results are not reported but 
available upon request from the authors. All the 
IIP growth rate series, which are the differenced 
logarithmic series, are negatively skewed and 
leptokurtic, which mirror those of the overall US 
IIP as reported by Ho and Tsui (2003). This 
implies that, except for the Non-Durables sector, 
all the US sectoral IIP series have higher values of 
standard deviation. Also, for the Manufacturing 
sector, the values of skewness and kurtosis are 
higher than the overall US IIP. This could be 
ascribed to the greater responsiveness of the 
Manufacturing sector to business cycle shocks, 
which engender the frequent occurrences of large, 
extreme observations. Incidentally, the leptokurtic 
nature of all the sectoral IIP series also lends 
support to the appropriateness of applying 
GARCH models to our data sets to accommodate 
the excess kurtosis. 

The appropriateness of GARCH models is further 
corroborated by the possible existence of 
conditional heteroskedasticity, as manifested by 
various tests for non-linear dependencies such as 
the McLeod-Li and the ARCH LM (Engle 1982) 
tests. In fact, most of the McLeod-Li and ARCH 
LM test statistics are significant at least at the 5% 
level. The non-parametric BDS and runs tests 
further support the existence of non-linear 
dependencies. Also, the runs test statistics based 
on the squared and absolute series of the growth 
rates are generally significant and demonstrate the 
possible presence of conditional 
heteroskedasticity. The Sentana’s (1995) 
QARCH(q) LM test statistics are significant at the 
5% level, suggesting the presence of asymmetric 
conditional volatilities. Sentana (1995) has also 
suggested a one-sided version of the QARCH(q) 
LM test, which is based on the summation of the 
square of the t-ratios of the coefficients, for greater 
power. To ensure consistency, we have also 
implemented this test version and the results are 
similar to the aforementioned findings. 

Another noteworthy issue is the need to ensure the 
stationarity of our data sets. We apply the 
Augmented Dickey Fuller (ADF) Tests to our data 
sets in accord with the procedure stipulated by 
Enders (1995). Additionally, to ensure consistency 
of our results, the Phillips-Perron (PP) test 
statistics are calculated. All test statistics are 
statistically significant at the 1% level, therefore 
indicating stationarity. Additionally the Ljung-Box 
Q-statistic and the Breusch-Godfrey (BG) test 
statistics for the ADF test are statistically 
insignificant at the 5% level. This implies that the 

residuals obtained from the ADF test equations are 
approximately white noise. 

We finally estimate the various asymmetric 
GARCH models using the Maximum Likelihood 
Estimation (MLE) sub-routines in GAUSS. We 
adopt the Broyden-Fletcher-Goldfarb-Shanno 
(BFGS) quasi-Newton optimisation algorithm for 
most of our estimation results. Additionally, we 
have set the convergence criterion (tolerance level) 
to the default level of 10-5. To ensure that the 
parameter estimates obtained are stable, we have 
also used stricter criteria (up to 10-8) and the 
estimates are found to be consistent. In fact, 
estimation results are generally invariant to the 
choice of the initial values.  

The conditional mean, variance/covariance matrix, 
and the conditional correlations are simultaneously 
estimated in one step assuming normality. For the 
conditional mean specification, an AR(12) filter is 
chosen. This specification follows Schwert (1989) 
applying a 12th-order autoregression to monthly 
US macroeconomic data to model macroeconomic 
volatility. Nelson and Foster (1994) also suggest 
that “mis-specifying the conditional means adds 
only trivially (at least asymptotically) to 
measurement error”, whereas other factors such as 
capturing the “leverage effect” and modelling the 
fat-tailed nature of residuals are potentially more 
important. In fact, we have alternatively estimated 
an AR(6) model to filter the series and the results 
are consistent with those of AR(12). 

Given that there are many parameters to be 
simultaneously estimated and that we are using 
macroeconomic data sets that are relatively small 
compared with financial time series, difficulties in 
attaining convergence are sometimes encountered. 
To facilitate convergence, we adopt the following 
strategies during the estimation: first, we apply a 
two-step approach by estimating an AR(12) filter 
for the conditional mean and then use the residuals 
to estimate the 3 asymmetric GARCH models. 
Second, we adopt an incremental approach by first 
estimating the most restrictive model and then 
proceeding gradually to the least restrictive one. 

Conditional Variance and Correlations 
 
Our results show that the parameter estimates for 
the conditional variance equations in the CC-
QGARCH, CC-LGARCH, and CC-TGARCH 
models are similar to those in the VC-QGARCH, 
VC-LGARCH, and VC-TGARCH models, 
respectively. This is consistent with the findings of 
Tse and Tsui (2002), who note that incorporating 
time-varying correlations does not have much 
effect on the conditional variance estimates.  
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Table 1:  VC-QGARCH (1,1): Estimates of Conditional Variance and Conditional Correlations 
 [sit =  +  it-1 + 2

it-1 + s it-1] 
Conditional Variance Conditional Correlations 

 Sector 1 Sector 2 VC-QGARCH 
Sectors 
1-2 

1 1 1 1 2 2 2 2  1 2 

CG-IG 10.110 
(0.002) 

0.079 
(0.117) 

0.9275 
(0.094) 

-0.421 
(0.016) 

11.260 
(0.001) 

0.0201 
(0.021) 

0.9807 
(0.018) 

-0.456 
(0.041) 

0.498 
(0.042) 

0.4261 
(0.058) 

0.0942 
(0.047) 

CG-M 10.510 
(0.000) 

0.0541 
(0.036) 

0.9469 
(0.03) 

-0.445 
(0.014) 

9.4500 
(0.000) 

0.0442 
(0.029) 

0.9567 
(0.023) 

-0.543 
(0.014) 

0.8363 
(0.033) 

0.9630 
(0.016) 

0.0124 
(0.006) 

CG-ND 10.509 
(0.000) 

0.1900 
(0.096) 

0.8439 
(0.064) 

-0.445 
(0.010) 

13.164 
(0.000) 

0.1158 
(0.043) 

0.8980 
(0.031) 

-0.412 
(0.007) 

0.6669 
(0.039) 

0.4780 
(0.101) 

0.1139 
(0.050) 

CG-RM 10.509 
(0.001) 

0.0695 
(0.080) 

0.9346 
(0.065) 

-0.465 
(0.004) 

13.163 
(0.000) 

0.0433 
(0.018) 

0.9563 
(0.015) 

-0.681 
(0.004) 

0.4930 
(0.044) 

0.4092 
(0.037) 

0.0522 
(0.033) 

IG-M 10.348 
(0.000) 

0.0198 
(0.015) 

0.9806 
(0.013) 

-0.354 
(0.027) 

12.566 
(0.000) 

0.0366 
(0.02) 

0.9629 
(0.016) 

-0.382 
(0.021) 

0.6942 
(0.052) 

0.9668 
(0.019) 

0.0040 
(0.008) 

IG-ND 10.510 
(0.000) 

0.0181 
(0.365) 

0.9825 
(0.337) 

-0.410 
(0.117) 

9.4500 
(0.002) 

0.1222 
(0.055) 

0.8917 
(0.035) 

-0.442 
(0.007) 

0.2763 
(0.024) 

0.7322 
(0.181) 

0.0022 
(0.001) 

IG-RM 12.340 
(0.000) 

0.0169 
(0.021) 

0.9835 
(0.02) 

-0.450 
(0.021) 

13.164 
(0.001) 

0.0339 
(0.013) 

0.9644 
(0.010) 

-0.340 
(0.006) 

0.4365 
(0.052) 

0.8251 
(0.035) 

0.0139 
(0.022) 

ND-RM 10.509 
(0.001) 

0.1258 
(0.043) 

0.8891 
(0.032) 

-0.466 
(0.013) 

13.164 
(0.000) 

0.0440 
(0.022) 

0.9554 
(0.018) 

-0.563 
(0.006) 

0.5359 
(0.048) 

0.3923 
(0.054) 

0.1018 
(0.045) 

M-ND 12.565 
(0.000) 

0.0485 
(0.115) 

0.9528 
(0.096) 

-0.392 
(0.022) 

13.164 
(0.002) 

0.0830 
(0.103) 

0.9237 
(0.082) 

-0.377 
(0.034) 

0.6983 
(0.035) 

0.0164 
(0.008) 

0.1857 
(0.061) 

M-RM 11.565 
(0.000) 

0.0454 
(0.031) 

0.9557 
(0.025) 

-0.413 
(0.009) 

11.164 
(0.000) 

0.0363 
(0.014) 

0.9623 
(0.011) 

-0.388 
(0.013) 

0.7652 
(0.025) 

0.3905 
(0.012) 

0.0028 
(0.001) 

Note: The Bollerslev-Wooldridge robust, heteroskedastic-consistent standard errors are reported in parentheses. 
  
TABLE 2 VC-TGARCH (1,1): Estimates of Conditional Variance and Conditional Correlations 

 [sit =  + (| it-1| - it-1) + sit-1] 
Conditional Variance Conditional Correlations  
Sector 1 Sector 2 VC-TGARCH 

Sector 
1-2 

1 1 1 1 2 2 2 2  1 2 

CG-IG 1.211 
(0.00) 

0.571 
(0.11) 

0.880 
(0.02) 

0.099 
(0.05) 

1.210 
(0.002) 

0.319 
(0.11) 

0.931 
(0.02) 

0.175 
(0.08) 

0.968 
(0.01) 

0.529 
(0.05) 

0.017 
(0.01) 

IG-N 1.224 
(0.00) 

0.313 
(0.09) 

0.923 
(0.02) 

0.359 
(0.07) 

1.2237 
(0.001) 

0.455 
(0.08) 

0.886 
(0.02) 

0.209 
(0.06) 

0.928 
(0.02) 

0.245 
(0.06) 

0.020 
(0.01) 

IG-R 1.209 
(0.00) 

0.746 
(0.06) 

0.899 
(0.02) 

0.095 
(0.10) 

1.2084 
(0.002) 

0.753 
(0.06) 

0.896 
(0.02) 

0.122 
(0.06) 

0.978 
(0.01) 

0.240 
(0.03) 

0.001 
(0.00) 

Note: The Bollerslev-Wooldridge robust, heteroskedastic-consistent standard errors are reported in parentheses.  
 
 
Tables 1 and 2 show the estimation results of the 
VC-QGARCH and VC-TGARCH models for the 5 
sectoral IIP series respectively. Due to the space 
limitation, the results for VC-LGARCH are not 
reported here. First, the coefficient of volatility 
asymmetry is generally significant at least at the 
5% level for all the 5 series in the three models. In 
particular, the coefficient suggests that negative 
shocks have a greater impact on future volatilities 
than positive shocks of the same magnitude. This 
is consistent with the findings of Ho and Tsui 
(2001, 2003 and 2004), who have detected 
significantly negative volatility asymmetry in the 
real GDP and overall IIP of the US. 
 
Next, most parameter estimates of the time-
varying conditional correlation coefficient 
equation are significant at the 5% level, indicating 
that dynamic correlations probably exist among the 
5 main industrial groups/sectors. Additionally, the 
estimates of the time-invariant component of the 

correlation coefficient, , are significantly positive 
and broadly similar to those estimates from the 
constant conditional correlations models. The 
finding of positive correlations is consistent with 
Lucas’ (1977) observation that output changes 
across broadly defined sectors move together in 
the sense that they exhibit high conformity. 
 
More importantly, however, the pattern of 
conditional correlations and the magnitude of  
differ among the 10 sectoral pairs. For instance, in 
the case of the VC-QGARCH model,  ranges 
from a low of 0.2763 (IG-ND pair) to 0.7652 (M-
RM pair) and 0.8363 (CG-M pair). This is 
consistent with results from the VC-LGARCH 
model. Also, the VC-TGARCH model suggests 
that the correlation between Investment Good and 
Raw Materials is stronger than that between the 
Investment Good and the Non-Durables.  
 
One possible explanation is the differences in the 
type and nature of output from the various industry 
groups/sectors. For instance, the output of 
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Investment Good is usually considered durable, 
and thus output fluctuations in this sector do not 
correlate closely with those of the Non-Durables 
sector. As highlighted earlier, Lucas (1977) 
observes that the production of producer and 
consumer durables exhibits much more amplitude 
than the production of non-durables. This could 
partly explain the lower correlation between 
investment and non-durable goods. In contrast, the 
Manufacturing and Raw Materials exhibit 
appreciably higher correlation, probably because 
the latter sector is a major source of intermediate 
inputs to the former. As such, when there is a 
decline in the Manufacturing sector, the derived 
demand for factor inputs from the Raw Materials 
subsequently falls. In the case of Consumer Goods 
and Manufacturing, consumer products probably 
constitute a sizeable proportion of the total output 
of Manufacturing, thus giving rise to the high 
correlation between these two sectors.  
 
We have also examined the conditional standard 
deviations of the IIP series (results are available 
upon request). Casual observation suggests that IIP 
volatility apparently increase during economic 
downturns across different industry groups/sectors. 
In particular, increases in the conditional deviation 
usually occur after the contractions (recessions) in 
the US economy. According to the NBER, for the 
period from January 1961 to December 1997, 
recessions have occurred in 1970, 1975, 1982, and 
1990-91. The results indicate that, during or 
shortly after these recessions, the conditional 
standard deviations have been significantly higher 
for sectors such as the Consumer Good, 
Investment Good and Manufacturing sectors. This 
result is consistent with Ho and Tsui (2003), who 
observe that in the period after the 1973/74 and 
1979 oil price shocks, the world economy plunged 
into a global recession and the conditional standard 
deviation of the overall US IIP is relatively higher. 
Indeed, Engle (1982) has noted that, in the chaotic 
1970s when economies were plagued by 
stagflation, estimated variances of inflation 
increase substantially.  
 
Another noteworthy feature is that the level of IIP 
conditional volatility is generally lower in the late 
1980s and the 1990s. This could be partly ascribed 
to the generally accepted view that the US 
economy is more stable in the years after World 
War II than in the pre-war period (Diebold and 
Rudesbusch 1992). This consensus is reinforced by 
formal examinations of postwar stabilisation, such 
as DeLong and Summers (1986). These studies 
have focused on the changing volatility of business 
fluctuations, and they have uniformly concluded 
that the variability of various macroeconomic 
aggregates about trend have diminished during the 

post-war period. Also, according to the NBER’s 
Business Cycle Dating Committee, the period from 
March 1991 onwards marks the beginning of a 10-
year expansion that is the longest in the NBER’s 
chronology (NBER 2002). This protracted period 
of expansion, partly spurred by substantial 
productivity gains arising from advances in 
technological advances, has probably helped to 
reduce economic uncertainty and contributed to the 
low conditional standard deviations of the sectoral 
IIP series.  

5. CONCLUSION 

In this paper, we formulate three new multivariate 
asymmetric GARCH models under a synthesis and 
improvement of the methodologies of Ding et al 
(1993), Sentana (1995), and Tse and Tsui (2002).  
We apply these models to five main sectoral 
indices of Industrial Production (IIP) of the United 
States, including the Consumer Good (CG), the 
Investment Good (IG), the Manufacturing (M), the 
Non-Durables (ND) and the Raw Materials (RM). 
A major advantage of the proposed models over 
the existing specifications is that they are 
computationally manageable and are capable of 
capturing the properties of volatility asymmetry 
and time-varying correlations concurrently. Our 
study demonstrates that asymmetric conditional 
volatility is present in many of the sectoral IIP 
series, and that the conditional correlations are 
significantly time-varying. The finding of 
asymmetric volatility shocks has important policy 
implications. If negative shocks induce greater 
future volatilities on IIP than positive shocks of the 
same magnitude, this might further vindicate the 
implementation of macroeconomic stabilisation 
measures by the government in times of recession.  
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